Power plants – Pressure fluid source and motor – Having condition responsive control in a system of distinct...
Reexamination Certificate
2002-09-25
2004-08-17
Look, Edward K. (Department: 3745)
Power plants
Pressure fluid source and motor
Having condition responsive control in a system of distinct...
C091S435000
Reexamination Certificate
active
06775974
ABSTRACT:
CROSS-REFERENCE TO RELATED APPLICATIONS
Not Applicable.
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
Not Applicable.
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to hydraulic systems for operating machinery, and in particular to algorithms for controlling electrohydraulic valves in such systems.
2. Description of the Related Art
A wide variety of machines have moveable members which are operated by an hydraulic actuator, such as a cylinder and piston arrangement, that is controlled by a hydraulic valve. Traditionally the hydraulic valve was manually operated by the machine operator. There is a present trend away from manually operated hydraulic valves toward electrical controls and the use of solenoid operated valves. This type of control simplifies the hydraulic plumbing as the control valves do not have to be located near an operator station, but can be located adjacent the actuator being controlled. This change in technology also facilitates sophisticated computerized control of the machine functions.
Application of pressurized hydraulic fluid from a pump to the actuator can be controlled by a proportional solenoid operated spool valve that is well known for controlling the flow of hydraulic fluid. Such a valve employs an electromagnetic coil which moves an armature connected to the spool that controls the flow of fluid through the valve. The amount that the valve opens is directly related to the magnitude of electric current applied to the electromagnetic coil, thereby enabling proportional control of the hydraulic fluid flow. Either the armature or the spool is spring loaded to close the valve when electric current is removed from the solenoid coil. Alternatively a second electromagnetic coil and armature is provided to move the spool in the opposite direction.
When an operator desires to move a member on the machine a joystick is operated to produce an electrical signal indicative of the direction and desired rate at which the corresponding hydraulic actuator is to move. The faster the actuator is desired to move the farther the joystick is moved from its neutral position. A control circuit receives a joystick signal and responds by producing a signal to open the associated valve. A solenoid moves the spool valve to supply pressurized fluid through an inlet orifice to the cylinder chamber on one side of the piston and to allow fluid being forced from the opposite cylinder chamber to drain through an outlet orifice to a reservoir, or tank. A hydromechanical pressure compensator maintains a nominal pressure (margin) across the inlet orifice portion of the spool valve. By varying the degree to which the inlet orifice is opened (i.e. by changing its valve coefficient), the rate of flow into the cylinder chamber can be varied, thereby moving the piston at proportionally different speeds. Thus prior control methods were based primarily on inlet orifice metering using an external hydromechanical pressure compensator.
Recently a set of proportional solenoid operated pilot valves has been developed to control fluid flow to and from the hydraulic actuator, as described in U.S. Pat. No. 6,149,124. In these valves, the solenoid armature acts on a pilot poppet that controls the flow of fluid through a pilot passage in a main valve poppet. The armature is spring loaded to close the valve when electric current is removed from the solenoid coil.
The control of an entire machine, such as an agricultural tractor or construction equipment is complicated by the need to control multiple functions simultaneously. For example, in order to operate a back hoe, hydraulic actuators for the boom, arm, bucket, and swing have to be simultaneously controlled. The loads acting on each of those machine members often are significantly different so that their respective actuators require hydraulic fluid at different pressures. The pump often is a fixed displacement type with the outlet pressure being controlled by an unloader. Therefore, the unloader needs to be controlled in response to the function requiring the greatest pressure for its actuator. In some cases the pump may be incapable of supplying enough hydraulic fluid for all of the simultaneously operating functions. At those times it is desirable that the control system allocate the available hydraulic fluid among those functions in an equitable manner, taking into account that some function may deserve fluid on a higher priority than other functions.
SUMMARY OF THE INVENTION
A circuit branch of a hydraulic system has an electrohydraulic proportional valve connected in series with a hydraulic actuator between a supply line containing pressurized fluid and a return line connected to a tank. The present method for operating the electrohydraulic proportional valve comprises requesting a desired velocity for the hydraulic actuator. Such a request may emanate from an operator input device for the machine on which the hydraulic circuit is a component. A parameter, which varies with changes in a force acting on the hydraulic actuator, is sensed to provide an indication of that force. For example, this parameter may be pressure at the hydraulic actuator.
A valve flow coefficient, characterizing fluid flow through the electrohydraulic proportional valve that is required to achieve the desired velocity, is derived based on the desired velocity and the sensed parameter. In a preferred embodiment of the present method, this derivation comprises using the desired velocity and the sensed parameter to produce an equivalent flow coefficient that characterizes the fluid flow in the entire hydraulic circuit branch. The valve flow coefficient for the electrohydraulic proportional valve then is determined from that equivalent flow coefficient. Activation of the electrohydraulic proportional valve is performed based on the valve flow coefficient.
One type of hydraulic circuit with which the present method may be used has a first valve coupling the actuator to a supply line containing pressurized fluid and a second valve coupling the actuator to a tank return line. Another aspect of the present method also specifies a preferred relationship between a flow coefficient for the first valve and a flow coefficient for the second valve. Here, the valve flow coefficients derived for each of the first and second valves from the equivalent flow coefficient, also satisfy the preferred relationship.
Other refinements of the basic method may be implemented to control one or both actuator port pressures (e.g. to inhibit cavitation from occurring on the inlet port).
REFERENCES:
patent: 3954046 (1976-05-01), Stillhard
patent: 4061155 (1977-12-01), Sopha
patent: 4250794 (1981-02-01), Haak et al.
patent: 4437385 (1984-03-01), Kramer et al.
patent: 5201177 (1993-04-01), Kim
patent: 5249140 (1993-09-01), Kessler
patent: 5490384 (1996-02-01), Lunzman
patent: 5666806 (1997-09-01), Dietz
patent: 5701793 (1997-12-01), Gardner et al.
patent: 5878647 (1999-03-01), Wilke et al.
patent: 5947140 (1999-09-01), Aardema et al.
patent: 5960695 (1999-10-01), Aardema et al.
patent: 6282891 (2001-09-01), Rockwood
Arne Jansson, et al., “Separate Controls of Meter-in and Meter-out Orifices in Mobile Hyraulic Systems,” SAE Technical Papers Series, Sep. 1999, pp. 1-7, SAE International, Warrendale, PA.
Haas George E.
HUSCO International Inc.
Leslie Michael
Look Edward K.
Quarles & Brady LLP
LandOfFree
Velocity based method of controlling an electrohydraulic... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Velocity based method of controlling an electrohydraulic..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Velocity based method of controlling an electrohydraulic... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3289632