Vehicle travel control system

Data processing: vehicles – navigation – and relative location – Vehicle control – guidance – operation – or indication – Automatic route guidance vehicle

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C701S026000, C701S050000, C701S210000, C701S301000

Reexamination Certificate

active

06480769

ABSTRACT:

BACKGROUND OF INVENTION
1. Field of the Invention
This invention relates to a vehicle travel control system which controls the travel of a plurality of unmanned or manned vehicles.
2. Description of the Related Art
In extensive mine sites and the like, it is necessary to convey ore one way over several tens of kilometers by means of dump trucks. In this type of industry, the use of unmanned vehicles has become widespread. Position measuring devices such as GPS (Global Positioning System) are provided in the vehicles and this position measuring device is used to compare continuously the position measured using the position measuring device and the recorded course data and the two are adjusted so that they correspond. By this means, the unmanned vehicle travels along the predetermined course.
Apart from the unmanned vehicles (dump trucks), there are various types of service vehicles on the travel track in an extensive mine site such as graders and water sprinklers, conveying vehicles carrying excavators, and light vehicles conveying operators and performing maintenance operations.
The velocity of these various types of vehicle varies to a great extent. Vehicles such as graders have an extremely low velocity of approximately 7 km while they are operating, while vehicles such as dump trucks and light vehicles travel at a high velocity (of the order of 50 km). For this reason, the low-velocity vehicles constitute an obstacle for the high velocity vehicles. In addition, vehicles which have broken down ahead and fallen rocks and the like also constitute obstacles.
For this reason, when there is a grader ahead of a dump truck (unmanned vehicle) performing repair operations at extremely low velocity, and there is a broken down vehicle or fallen rock or the like ahead of the dump truck (unmanned vehicle) there is no choice but to interrupt the conveying operations using the dump trucks until the grading operations have been completed or the obstacle has been removed. Interrupting the conveying operations reduces the operating efficiency. In particular, in seasons when there is a lot of rain, it is necessary to perform grading operations with rapid succession and the reduction in the operating frequency is felt keenly.
In the prior art, various inventions have been applied for patents and publicized in which, when there is an obstacle ahead of a unmanned vehicle, the obstacle is detected with an obstacle detector and on the basis of this detection a track permitting the obstacle to be avoided is sought and that evasive track is adopted.
For example, Japanese Patent Application Laid-Open No. 62-88006 has disclosed an invention in which, if an obstacle has been discovered by means of an obstacle sensor, the direction in which there is no obstacle is determined by changing the direction in which the vehicle is facing and the vehicle is made to move in the direction determined.
In addition, Japanese Patent Application Laid-Open No. 9-269828 discloses an invention in which, if there is an obstacle ahead of a unmanned vehicle, the vehicle is made to travel along a guide provided on the underlying surface, and if an obstacle is detected by means of sensors, a bypass track away from the guide is determined and the unmanned vehicle is made to move along this bypass track.
However, these technologies are based on the presumption that there are sufficiently extensive, level areas on which the unmanned vehicle can travel to the side of the path on which it travels in such covered travel tracks over short distances. In outdoor industrial facilities such as mines where the travel track distances extend in one direction over an as long stretch as several tens of kilometers and it is not possible to ensure that there are flat and sufficiently large areas for vehicles to pass etc., it is not possible to apply such technology as it is.
In addition, for example, even if it were possible to provide passing level areas on both sides of the travel track, there is the fear that the side of the track will collapse under the weight of large dump trucks. In fact, when laden the dump trucks' weight exceeds 200 t. For this reason, when vehicles pass on the shoulder of the track which is fragile and has not been maintained, there is also the risk that the tires will become stuck and in the worst case the vehicles may slip of the track and fall. In addition, there is the problem of correctly implementing the means for sensing the state of the surface of the shoulder of the track.
On extensive mine sites, there is generally a 2-way dual lane vehicle track. For this reason, if there is an obstacle present ahead of the vehicle, a system has been devised in which the vehicles are made to pass the obstacle by traveling on the oncoming lane of the track. Because the oncoming lane is maintained, the abovementioned problems such as the risk of getting stuck and of collapse of the shoulder which are due to insufficient maintenance of areas such as the shoulder of the track do not occur. However, as a result of the vehicles being made to travel on the oncoming track, there is the risk of a head on collision.
When there are manned vehicles traveling on the oncoming lane, it is not possible to anticipate when a unmanned vehicle will disrupt the oncoming lane. For this reason, it is difficult to avoid the risk of head-on collisions. In addition, if the oncoming vehicle is also a unmanned vehicle, it is not possible to stop at a safe position after confirming the presence of passing vehicles by means of sensors mounted on the vehicles. This is because the effective detection range of obstacle sensors is limited. After detecting stationary obstacles with an obstacle sensor, it is possible to maintain a sufficient stopping distance and stop safely, but after detecting vehicles traveling at high velocity it is not possible to maintain sufficient stopping distance and stop safely For this reason, it is not possible to avoid the risk of head-on collisions.
In the prior art as mentioned above, when vehicles are made to travel on the oncoming lane in order to avoid obstacles on their original lane, vehicles on the oncoming lane cannot maintain sufficient stopping distance and there is a risk of a head-on collision.
The present invention is designed with the above circumstances in mind, and resolves the first problem by making it possible that when vehicles are made to travel on the oncoming lane in order to avoid an obstacle on their original lane, there is no risk of a head-on collision and the vehicles can pass safely.
In contrast to unmanned vehicles which travel in covered factories and the like, the travel condition of the unmanned vehicles which travel outdoors in places such as mines is changed according to the various external factors.
For example, not only are there sometimes obstacles such as broken down vehicles and fallen rocks on the travel track on which the vehicles are traveling, but also the surface of the travel track is in some cases degraded by rainfall and sprayed water and the effective range of the sensors is shortened. In addition, on a mine site, because the surface on which the vehicles travel is paved, only part of the surface of the track becomes muddy and slippery.
Therefore, in view of such things as the aforementioned changes in the state of the travel track, it is necessary to bring about changes in the travel conditions such as the position and velocity of the vehicles in order to be able to ensure safety.
In extensive industrial sites according to the prior art, if changes are brought about in the travel conditions of the vehicles, the data on the travel conditions of the entirety of the extensive travel tracks has to be updated and this updated data has to be transmitted to all the vehicles.
The radio load when attempting to transmit the data relating to the travel conditions of the entirety of the aforementioned extensive travel tracks becomes extremely large. A method is adopted in which data is transmitted to all the vehicles after all they have all been temporarily stopped. However, the proble

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Vehicle travel control system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Vehicle travel control system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Vehicle travel control system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2933901

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.