Land vehicles: bodies and tops – Tops – Roof structure
Reexamination Certificate
2003-01-21
2004-11-16
Pedder, Dennis H. (Department: 3612)
Land vehicles: bodies and tops
Tops
Roof structure
C296S216080, C296S217000, C296S224000
Reexamination Certificate
active
06817658
ABSTRACT:
TECHNICAL FIELD
The present invention relates to a vehicle sunroof system, and in particular to a vehicle sunroof system provided with an improved inner frame structure supporting the slide mechanism for a moveable sunroof panel.
BACKGROUND OF THE INVENTION
A vehicle sunroof system is typically provided with a moveable sunroof panel that can slide in a fore-and-aft direction to open and close a roof opening formed in a fixed roof panel of the vehicle. Typically, an inner frame including a pair of side frame members and a front frame member extending between the front ends of the side frame members is provided under the fixed roof panel as disclosed in Japanese Utility Model Laid Open Publication (Kokai) No. 7-40231. These frame members extend along the periphery of the roof opening, and are typically made of extruded aluminum alloy. The front frame member is provided with a front drain groove, and each side frame member is provided with a side drain groove and a guide rail for guiding the sliding movement if the moveable roof panel.
In such an arrangement, it is important to prevent moisture from entering not only the passenger compartment but also the guide rails and other parts of the mechanism for actuating the sunroof system. In particularly when the guide rail is formed as a part of an extruded side frame member, the front end of the guide rail remains exposed, and this could allow the intrusion of water into the guide rail.
Japanese Patent Publication (Kokoku) No. 5-23208 discloses an inner slide type sunroof system incorporated with a tilt mechanism. In the invention disclosed in the prior patent publication, a lock lever is pivotally supported by each front slider of the moveable panel, and an engagement projection provided at one end of this lock lever is adapted to engage an engagement hole formed in the corresponding side frame member to fixedly secure the moveable panel against the fore-and-aft movement except when the moveable panel is tilted down and slid rearward. In this lock lever arrangement. when the rear end of the moveable panel is lowered (tilted down), the other end of the lock lever is pushed down by the lower surface of the moveable panel and the engagement projection is lifted out of the engagement hole so that the moveable panel is thereby allowed to be slid rearward. Conversely, when the rear end of the moveable panel is raised to achieve the fully closed state of the moveable panel or further upwardly to achieve the tilted up state, the other end of the lock lever is disengaged from the lower surface of the moveable panel, and the engagement projection of the lock lever again fits into the engagement hole so that the moveable panel is firmly locked against any fore-and-aft movement.
However, when the side frame member is made of aluminum alloy which is relatively soft, the repeated engagement of the engagement projection with the engagement hole could cause excessive wear to the engagement projection, and this would lead to the generation of undesired rattling noises due to inadequate restraint of the moveable panel. It is conceivable to provide a separate member made of more wear resistant material for defining the engagement hole or to use a harder material for the side frame member, But, in either case, the manufacturing cost inevitably rises.
Tilting down of the moveable panel preceding the rearward sliding movement of the moveable panel is typically effected by engaging a lateral pin shaft provided in the rear slider in a cam slot formed in a side plate depending from the moveable panel and provided with a corresponding cam profile. However, a certain play is inevitable between the lateral pin shaft and cam slot, and this, combined with the plays in other parts of the related mechanism, could cause undesired rattling noises during the opening and closing operation of the sunroof system.
Typically, such a moveable panel is provided with front and rear sliders that are guided by the guide rails and is actuated by a push-pull cable attached to the rear sliders and driven by an electric motor. When closing the moveable panel, the push-pull cable is pushed until the moveable panel is fully closed. The fully closed position of the moveable panel is most often defined by a mechanical stop which limits the forward movement of the front sliders, and the push-pull cable tends to be abruptly compressed because of the inertia of the electric motor when the moveable panel comes to a stop. This abrupt compression of the push-pull cable could induce a buckling of the push-pull cable which would strike the cable against the sheath tube thereof or any other member adjacent to the push-pull cable, and thereby cause undesired noises.
Also, the mechanical stop that limits the forward movement of the front sliders must be capable of withstanding a substantial force, and the need for such a member not only increases the manufacturing cost but also requires an extra mounting space which is detrimental to the compact design of the sunroof system.
As the moveable panel tilts down and slides rearward, a guide pin provided in the side plate is guided downward and then rearward by a guide member defining a curved guide slot, and moves along an upper guide slot of the guide rail while the rear, slide is guided along a lower guide slot of the guide rail. Because the upper and lower guide slots are provided adjacent to each other, when the guide member is fitted into the guide rail, and the curved guide slot defined in the guide member is aligned with the upper guide slot, the guide member interferes with the lower guide slot. Therefore, the rearward movement of the front slider is limited by the guide member, and this limits the maximum stroke of the fore-and-aft movement of the moveable panel. This is not desirable because it is normally desired to maximize the opening area of the sunroof system, and the maximum stroke of the fore-and-aft movement of the moveable panel is therefore desired to be maximized.
A sunroof system is often provided with a wind deflector device that is deployed upward from the front edge of the roof opening to control the air flow into the passenger compartment and to prevent air flow noises. Typically, a deflector blade is supported by a pair of arms on either side and urged upward by a spring member so as to rise when the moveable panel is moved rearward and to be retracted as the moveable panel closes the roof opening. Japanese Utility Model Laid Open Publication (Kokai) No. 3-43024 discloses a support link mechanism for improving the support rigidity of such a wind deflector device. However, because the support link mechanism includes a support link member that extends obliquely from a front end of the moveable panel and the inner frame, the moisture On the moveable panel may drip along the support link particularly when closing the moveable panel, and may reach components of the sunroof system such as the guide rails. This is not desirable for the reliable operation of the sunroof system.
The base end of each deflector arm is pivotally supported by a side frame member. The side frame member is typically made of extruded aluminum while the deflector arm is made of stainless steel. Because the two parts made of different metals are in contact with each other, galvanic corrosion is induced. This could accelerate the corrosion of the side frame member and severely impair the durability of the sunroof system.
The side frame members of the inner frame are each provided with a drain groove and each terminal end of the drain groove is provided with a drain water outlet to expel water out of the vehicle. Typically, a hose is used for guiding water from the corresponding water drain outlet. Therefore, when a large amount of water is required to be released, such as when the vehicle accelerates or decelerates, the water flow fills the entire cross section of the internal passage of the drain water outlet member, and is prevented from flowing as smoothly as required because of the air trapped in the passage. In such a case, the water could overflow from
Hotta Kouichi
Ohara Tatsuya
Ohnishi Masaharu
Tamura Michio
Uehara Tatsuaki
Honda Giken Kogyo Kabushiki Kaisha
Marger & Johnson & McCollom, P.C.
Pedder Dennis H.
LandOfFree
Vehicle sunroof system does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Vehicle sunroof system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Vehicle sunroof system will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3323972