Data processing: measuring – calibrating – or testing – Measurement system in a specific environment – Electrical signal parameter measurement system
Reexamination Certificate
2001-02-13
2003-09-30
Hoff, Marc S. (Department: 2857)
Data processing: measuring, calibrating, or testing
Measurement system in a specific environment
Electrical signal parameter measurement system
C307S010200, C307S010600, C180S287000, C340S426110
Reexamination Certificate
active
06629050
ABSTRACT:
1. FIELD OF THE INVENTION
The present invention generally relates to the field of vehicle security and particularly, to the field of computer processing-based vehicle-installed systems that perform a plurality of safety and security functions.
2. BACKGROUND OF THE INVENTION
The marketplace teems with products designed to enhance the safety and security of vehicles. The products range from simple mechanical devices to sophisticated computer-controlled systems. Because of the enormity of the automobile market, most if not all of the technology in vehicle safety and security can be found in devices and systems directed to the automotive industry. Products in the field of automotive safety and security are often differentiated according to the entity intended to perform the product installation. The most complex systems typically are designed to be installed in or are integrated during the construction of a vehicle by the manufacturers of the vehicle. Other systems, often referred to after-market products, typically require less integration with basic vehicle systems and are typically designed to be installed either by trained personnel operating out of a vehicle dealership or security system installation center, or by the end user of the vehicle. The simplest systems normally are specifically designed to be used and/or installed by the end-user of the vehicle, where the assumption is that no installation training is required.
With respect to vehicle manufacturers, nearly all motorized vehicles are presently manufactured with some level of built-in security system. These systems, commonly referred to as Original Equipment Manufacturer or OEM systems, range from mechanical ignition locks that prevent ignition and steering wheel turning until a vehicle is activated by a key, to computerized systems that not only disable the vehicle when an attempted theft or vandalism is detected, but also provide features like automatic door locks, automatic trunk latch, dome light control, headlight control and remote control of various accessories. These electronic security systems are wired during the manufacturing process and are fully integrated into the rest of the vehicle's electrical system.
The after-market vehicle safety and security products, which are either trained personnel or end user-installed, range from mechanical bars that are literally locked to the steering wheel to prevent wheel rotation, to multi-function electronic systems. The after-market mechanical devices are often but a slight deterrent because they can be easily bypassed. For example, the typical lock bar can be circumvented by severing the steering wheel and hard wiring the ignition switch. In contrast, the after-market electronic systems are more difficult to disarm. These systems, however, are correspondingly more expensive and more difficult to install. In the marketplace, these systems are often offered to the consumer as an option by the vehicle dealership.
As noted above, the after-market electronic systems are typically less complex than the manufacturer-installed systems, but are still quite labor-intensive to install and de-install. After-market electronic systems, though seemingly less vehicle-integrated than the manufacturer systems, typically require a partial disassembly of the motorized vehicle, and interfacing with the vehicle's electrical system. This interfacing requires wiring dedicated specifically to the security system, and integrating the new wiring with the vehicle's existing wiring. The existing and new wires normally must be cut, spliced, and/or crimped as part of the process of installing the after-market systems. Such extensive manipulation of electrical wiring potentially introduces defects into the installed electronic security systems, and in the worst case, into the vehicle's other electrical systems. For example, a poorly crimped wire is susceptible to failure as a result of shock, vibration, exposure to moisture and other corrosive materials. Potentially, within months after a defective crimp is made, an electronic security system or an aspect of the vehicle's electrical system could suddenly fail.
For dealer-installed systems, therefore, dealerships attempt to avoid such problems by employing expert installers. However, because of the substantial expertise needed by the installers, the dealerships incur a substantial labor cost. Substantial costs are also potentially incurred where a de-installation of an electronic security system is necessary. Sometimes, for example, the after-market product has been previously installed by the manufacturer. Because such systems are typically an optional feature at the time of vehicle purchase, often a vehicle buyer does not want the already-installed security system. In that event, the dealership must bear the substantial expense of de-installation or risk losing the sale.
With respect to the after-market electrical systems directed to the end-user, most consumers are technically incapable of installing an electronic security system, and are particularly unwilling to cut and splice the wires in a vehicle's electrical system as is required to install the security system. Still other consumers do not have the tools or time to install a vehicle security system and, therefore, the installation of an electronic security system must be performed, at a substantial additional expense, by a trained technician. Nevertheless, vehicle dealerships are highly motivated to dealer-install vehicle security systems as options on their vehicles because of the normally high profit margin associated with such vehicle options. Unfortunately, because the high labor cost, many vehicle owners are often deterred from having sophisticated security systems installed in their existing vehicles.
Thus, a need exists for a vehicle safety and security system that has the sophistication and multi-function capability desired by many vehicle owners while not exacting the prohibitive costs associated with installing and de-installing such systems. The needed vehicle safety and security system includes an effective theft-deterring capability comparable to other sophisticated security systems and preferably seamlessly incorporates other desirable safety and security features. Such features include a battery saving function to preserve a vehicle's battery charge capacity in the event of potential loss of battery power, such as when the headlights of a vehicle remain lit after the vehicle's engine has been deactivated. Another preferable feature is a battery warning function that informs the vehicle user of the charge capacity of the battery. Further, a need exists for a system that preferably includes an accident safety capability. The system disconnects the battery after a collision involving the vehicle as a measure for minimizing the probability of a vehicle fire caused by an electrical short circuit. Also, a system is needed that preferably includes intelligent control of and communication with the electronic accessories, including pre-existing and later-installed accessories, of a vehicle that are powered using the vehicle's electrical system.
The need for a sophisticated system that performs the above safety and security functions with easy installation and de-installation has, until now, not been effectively met. With respect to theft-deterrence, one of the more common measures has been to disconnect the vehicle's battery. The first battery disconnect system used as a safety and anti-theft device was disclosed by F. M. Blake in U.S. Pat. No. 1,654,450 on a method and apparatus of disconnecting the battery of a motorized vehicle by means of a hidden plunger/switch. Blake had three positions on the disclosed plunger/switch. The first position allowed normal operation of the vehicle. The second position inserted a resistive means in the electrical circuit of the battery and the starter so that the parking lights could operate but the starter and the horn would be disabled. The third position disconnected the battery completely from t
Hoff Marc S.
Jones Day
Kim Paul L
UDT Sensors, Inc.
LandOfFree
Vehicle safety and security system does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Vehicle safety and security system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Vehicle safety and security system will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3090428