Data processing: vehicles – navigation – and relative location – Vehicle control – guidance – operation – or indication – Vehicle diagnosis or maintenance indication
Reexamination Certificate
2002-12-27
2004-11-23
Beaulieu, Yonel (Department: 3661)
Data processing: vehicles, navigation, and relative location
Vehicle control, guidance, operation, or indication
Vehicle diagnosis or maintenance indication
C701S034000, C701S036000
Reexamination Certificate
active
06823244
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to several aspects of smart airbags particularly with the use of crush zone mounted sensors in a smart airbag system. It therefore draws on several previously filed patent applications by the assignee of the present invention as listed above all of which are incorporated herein by reference.
BACKGROUND OF THE INVENTION
Pattern recognition techniques, such as artificial neural networks are finding increased application in solving a variety of problems such as optical character recognition, face recognition, voice recognition, and military target identification. In the automotive industry in particular, pattern recognition techniques have now been applied to identify various objects within the passenger compartment of the vehicle, such as a rear facing child seat, as well as to identify threatening objects with respect to the vehicle, such as an approaching vehicle about to impact the side of the vehicle. See, for example, U.S. Pat. Nos. 5,829,782, 6,343,810 and RE 37,260 which are entirely incorporated herein by reference.
Pattern recognition techniques have also been applied to sense automobile crashes for the purpose of determining whether or not to deploy an airbag or other passive restraint, or to tighten the seatbelts, cutoff the fuel system, or unlock the doors after the crash (see, for example, U.S. Pat. No. 5,684,701 which is entirely incorporated herein by reference). In the past, pattern recognition techniques were not applied to forecast the severity of automobile crashes for the purpose of controlling the flow of gas into or out of an airbag to tailor the airbag inflation characteristics or to control seatbelt retractors, pretensioners or energy dissipaters to the crash severity. Furthermore, such techniques were also not to control the flow of gas into or out of an airbag to tailor the airbag inflation characteristics to the size, position or relative velocity of the occupant or other factors such as seatbelt usage, seat and seat back positions, headrest position, vehicle velocity, etc.
Every automobile driver fears that his or her vehicle will breakdown at some unfortunate time, e.g., when he or she is traveling at night, during rush hour, or on a long trip away from home. To help alleviate that fear, certain luxury automobile manufacturers provide roadside service in the event of a breakdown. Nevertheless, unless the vehicle is equipped with OnStar or an equivalent service, the vehicle driver must still be able to get to a telephone to call for service. It is also a fact that many people purchase a new automobile out of fear of a breakdown with their current vehicle. This invention is also concerned with preventing breakdowns and with minimizing maintenance costs by predicting component failure that would lead to such a breakdown before it occurs.
When a vehicle component begins to fail, the repair cost is frequently minimal if the impending failure of the component is caught early, but increases as the repair is delayed. Sometimes if a component in need of repair is not caught in a timely manner, the component, and particularly the impending failure thereof, can cause other components of the vehicle to deteriorate. One example is where the water pump fails gradually until the vehicle overheats and blows a head gasket. It is desirable, therefore, to determine that a vehicle component is about to fail as early as possible so as to minimize the probability of a breakdown and the resulting repair costs.
There are various gages on an automobile which alert the driver to various vehicle problems. For example, if the oil pressure drops below some predetermined level, the driver is warned to stop his vehicle immediately. Similarly, if the coolant temperature exceeds some predetermined value, the driver is also warned to take immediate corrective action. In these cases, the warning often comes too late as most vehicle gages alert the driver after he or she can conveniently solve the problem. Thus, what is needed is a component failure warning system that alerts the driver to the impending failure of a component sufficiently in advance of the time when the problem gets to a catastrophic point.
Some astute drivers can sense changes in the performance of their vehicle and correctly diagnose that a problem with a component is about to occur. Other drivers can sense that their vehicle is performing differently but they don't know why or when a component will fail or how serious that failure will be, or possibly even what specific component is the cause of the difference in performance. The invention disclosed herein will, in most cases, solve this problem by predicting component failures in time to permit maintenance and thus prevent vehicle breakdowns.
Presently, automobile sensors in use are based on specific predetermined or set levels, such as the coolant temperature or oil pressure, whereby an increase above the set level or a decrease below the set level will activate the sensor, rather than being based on changes in this level over time. The rate at which coolant heats up, for example, can be an important clue that some component in the cooling system is about to fail. There are no systems currently on automobiles to monitor the numerous vehicle components over time and to compare component performance with normal performance. Nowhere in the vehicle is the vibration signal of a normally operating front wheel stored, for example, or for that matter, any normal signal from any other vehicle component. Additionally, there is no system currently existing on a vehicle to look for erratic behavior of a vehicle component and to warn the driver or the dealer that a component is misbehaving and is therefore likely to fail in the very near future.
Sometimes, when a component fails, a catastrophic accident results. In the Firestone tire case, for example, over 100 people were killed when a tire of a Ford Explorer blew out which caused the Ford Explorer to rollover. Similarly, other component failures can lead to loss of control of the vehicle and a subsequent accident. It is thus very important to accurately forecast that such an event will take place but furthermore, for those cases where the event takes place suddenly without warning, it is also important to diagnose the state of the entire vehicle, which in some cases can lead to automatic corrective action to prevent unstable vehicle motion or rollovers resulting in an accident. Finally, an accurate diagnostic system for the entire vehicle can determine much more accurately the severity of an automobile crash once it has begun by knowing where the accident is taking place on the vehicle (e.g., the part of or location on the vehicle which is being impacted by an object) and what is colliding with the vehicle based on a knowledge of the force deflection characteristics of the vehicle at that location.
Therefore, in addition to a component diagnostic, the teachings of this invention also provide a diagnostic system for the entire vehicle prior to and during accidents. In particular, this invention is concerned with the simultaneous monitoring of multiple sensors on the vehicle so that the best possible determination of the state of the vehicle can be determined. Current crash sensors operate independently or at most one sensor may influence the threshold at which another sensor triggers a deployable restraint. In the teachings of this invention, two or more sensors, frequently accelerometers, are monitored simultaneously and the combination of the outputs of these multiple sensors are combined continuously in making the crash severity analysis.
Definitions
“Pattern recognition” as used herein means any system which processes a signal that is generated by an object, or is modified by interacting with an object, in order to determine which one of a set of classes the object belongs to. In this case, the object can be a vehicle with an accelerometer which generates a signal based on the deceleration of the vehicle. Such a system might determine only that the object is or is not a
Automotive Technologies International Inc.
Beaulieu Yonel
Roffe Brian
LandOfFree
Vehicle part control system including electronic sensors does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Vehicle part control system including electronic sensors, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Vehicle part control system including electronic sensors will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3327646