Vehicle park brake actuator system

Brakes – Wheel – Axially movable brake element or housing therefor

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C188S072100, C188S072600, C188S00200R, C074S535000, C074S501600

Reexamination Certificate

active

06705436

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention relates to a park brake actuator system for a vehicle. As is well known, vehicles often comprise a park brake system for preventing undesirable inadvertent motion of the vehicle when it is not in use. Park brake systems of vehicles generally comprise one or more braking components and one or more braked components complimentary to each of the one or more braked components. The braking component of each complimentary pair of a braking component and a braked component is anchored to either the superstructure of the vehicle or a drivetrain of the vehicle. The superstructure of a vehicle being the main strength providing structure of the vehicle which provides support for and ensures proper relative location of a large percentage of the other components of the vehicle. For vehicles of body-on-frame construction the superstructure of the vehicle is a frame of the vehicle and for vehicles of unibody construction the superstructure is the main body structure of the vehicle. The braked component of each complimentary pair of a braking component and a braked component is anchored to whichever of the superstructure of the vehicle and the drivetrain of the vehicle its complimentary braking component is not anchored to. More specifically, which ever of the braking component and the braked component is anchored to the drivetrain of the vehicle is anchored to a working component of the drivetrain. For purposes of this disclosure a working component of the drivetrain of the vehicle is defined to be a component that must move relative to the superstructure of the vehicle in order for the vehicle to travel along the ground. As is well known, at least one of the braking component and the braked component of a parking brake system of a vehicle generally has attached to it friction material as is well known. Parking brake systems are constructed in such a manner that the braking component of the parking brake can be selectively maintained in a released position in which it is not in contact with the braked component or driven into and maintained in a set position in which the friction material that is attached to the braking component and/or the braked component is forcibly compressed between the braking component and the braked component. When the braking component is in its released position the parking brake system presents little to no resistance to movement of the working components of the drivetrain of the vehicle relative to the superstructure of the vehicle and, therefore presents little to no resistance to travel of the vehicle. When the braking component is in its set position frictional forces between the braking component, the braked component and the friction material between them resists relative motion between the braking component and the braked component and thus relative motion is resisted between the superstructure of the vehicle and the drivetrain of the vehicle and travel of the vehicle is resisted. When the one or more braking components of a park brake system are in their released position, the park brake system is in its released operational state, and an individual can operate the vehicle freely. When an individual desires to prevent undesirable inadvertent motion of a vehicle that is parked they can effect a set operational state of the park brake system by operating the park brake system to drive the one or more braking components of the park brake system to their set position and maintain them there. When the park brake system is in its set operational state in such a manner, it prevents the vehicle from inadvertently moving.
The mechanisms of park brake systems that drive the one or more braking components of the park brake system between their set and released positions and maintain them in those positions can have many different constructions. The present invention is particularly related to those park brake systems that have connecting linkages between the one or more braking components of the park brake system and a park brake actuator of the park brake system. Such park brake systems are generally constructed such that, when an individual moves the park brake actuator in an engaging direction, the connecting linkages are caused to move in a disengaging direction and the one or more braking components of the park brake system are caused to move toward their set position by the connecting linkages. The construction of such park brake systems is such that when the park brake actuator is moved in a disengaging direction, which is opposite the engaging direction, the connecting linkages are allowed or caused to move in a disengaging direction opposite their engaging direction. When the connecting linkages move in their disengaging direction the one or more braking components of the park brake system are either allowed to or are caused to move toward their released position by the connecting linkages. Most such park brake systems also generally comprise one or more return springs each of which is attached at one end to the superstructure of the vehicle and at the other end to braking components or connecting linkages of the park brake system. The construction of these park brake systems is such that the return springs bias the connecting linkages toward their disengaging direction which, in turn, bias the park brake actuator toward its disengaging direction. As a result, when an individual moves the park brake actuator of such a system in the engaging direction they must overcome the resistance provided by the return springs. Also, in order to maintain the one or more braking components in their set position, forces must be applied to the connecting linkages and/or the park brake actuator to balance the force applied by the return springs and prevent them from driving the connecting linkages and the park brake actuator in their disengaging directions. Most such park brake systems further include latching mechanisms for balancing the forces applied by the return springs to the connecting linkages when the braking components are in their set position so that the braking components can be maintained in their set position without an individual's attention. When an individual releases these latching mechanisms of the park brake system and subsequently releases the park brake actuator, the return springs drive the connecting linkages and the park brake actuator in their disengaging directions and allow or cause the braking components to travel to their released position. Many such park brake systems also have a return stop which is engaged to the superstructure of the vehicle and which contacts some part of the connecting linkages or the park brake actuator as they travel in their disengaging directions and limits the range of travel of the connecting linkages and the park brake actuator in their disengaging direction. For purposes of this disclosure the portion of the connecting linkages or the park brake actuator which contacts the return stop and limits the travel of the connecting linkages in their disengaging direction will be referred to as the return bumper of the park brake system. The return bumper may be any of a number of different portions of the connecting linkages or the park brake actuator. When an individual releases the latching mechanisms of such a park brake system the connecting linkages and the park brake actuator move in their disengaging directions until the return bumper contacts the return stop and their motion is stopped. Many constructions of such park brake systems are constructed in such a manner and operated in such a manner that, when the latching mechanisms of the park brake system are released, the connecting linkages and the park brake actuator develop considerable velocity as they travel in their disengaging direction. In such a situation the connecting linkages and the park brake actuator often have considerable velocity when the return bumper contacts the return stop and their velocity is dissipated almost instantaneously at that point. When the connecting linkages and the park brake actuat

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Vehicle park brake actuator system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Vehicle park brake actuator system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Vehicle park brake actuator system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3228469

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.