Vehicle motion control device and method

Fluid-pressure and analogous brake systems – Speed-controlled – With yaw control

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C180S193000, C303S112000, C701S074000

Reexamination Certificate

active

06659570

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a device and a method for controlling a motion of a vehicle such as an automobile, and more specifically, to such a device that controls driving and braking forces applied to wheels of a vehicle to stabilize the behavior of the vehicle during turn driving.
2. Description of Prior Art
In a modern automobile, a motion of a vehicle, such as a turning behavior of the vehicle body, is stabilized by an electronic controlling system monitoring vehicle running conditions such as a vehicle velocity, longitudinal and lateral accelerations, a yaw rate and a steering angle. When an undesirable condition such as a spin and a drift-out occurs, the controlling system cooperates with driving and braking systems to generate an appropriate driving or braking force on a particular wheel, which induces a yaw moment on the vehicle body (around its centroid) against the spin or drift-out condition, thereby maintaining an appropriate yaw rate of the vehicle body. For example, one of such devices for stabilizing the behavior of a vehicle body is disclosed in Japanese Patent Laid-Open Publication No. 11-91526, filed by Assignee of the present application, in which the behavior of a running vehicle is estimated through an index value (Drift-out Value) based upon a deviation between actual and target yaw rates of the vehicle body. When the behavior stability is deteriorated, the device applies braking forces to wheels individually, depending upon the degree of the deterioration, and generates a yaw moment for recovering the behavior stability or decelerates the vehicle, avoiding the risk that the vehicle is off its course.
In conventional vehicle motion control devices as shown in said publication, the condition of each wheel is less considered: the condition of each wheel is controlled by other devices, such as ABS control system, etc. Further, the controlling process for suppressing an undesirable motion is a negative feedback control, starting in response to the deterioration of the behavior, in which the actual index value is gradually varied toward a target index value. Thus, the suppression effect could be late or insufficient for an extensive deterioration. Further, such a vehicle motion control device would not start a behavior controlling process unless an index value indicating the stability/instability of a vehicle behavior largely deviates from its target value even if an undesirable condition such as wheel lock, wheel spin occurs at one of the wheels. Such deteriorated conditions at any of wheels would easily lead to the behavior instability. Thus, it is desirable that those are avoided in conjunction with a vehicle motion control process in order to obtain and maintain the behavior stability more effectively.
In principle, a motion of a turning vehicle is determined by frictional forces between wheels and road surfaces. Thus, together with anti-wheel-lock and anti-wheel-spin processes, the vehicle motion behavior would be estimated and controlled based upon the condition of each wheel.
SUMMARY OF INVENTION
Based upon such a concept as described above, the present invention provides novel and unique vehicle motion control devices and methods systematically treating the respective conditions of wheels to acquire and maintain the vehicle behavior stability together with anti wheel lock and wheel spin processing, braking forces distribution, etc.
According to the present invention, a device for controlling a running behavior of a vehicle comprises means for estimating a road reaction force generated on each of the wheels, means for calculating a yaw moment around a centroid of the vehicle body generated by the road reaction force on each of the wheels, and means for controlling driving and braking forces on each of the wheel based upon the yaw moments so as to stabilize the running of the vehicle. In this device, the running of the vehicle is efficiently and surely stabilized based upon a yaw moment actually generated by a road reaction force on each wheel by monitoring the road reaction forces on each of the wheels, instead of depending upon an index value based upon only a total vehicle running condition as in a conventional motion controlling device.
In order to obtain the stability of the vehicle running, the means for controlling the driving and braking forces on each of the wheels may include a calculation means which calculates a yaw moment required to be added to the vehicle body, and the driving and braking force on each wheels may be controlled so as to generate the required yaw moment. The required yaw moment may be calculated based upon the yaw moment presently generated by the road reaction force on each of the wheels and a yaw moment which can be generated through the control of the driving and braking forces on each of the wheels. In calculation of the required yaw moment and target forces on the wheels, a theoretical tire model may be employed.
The driving and braking force controlling means may be adapted to judge whether the behavior of the turning vehicle is stable or unstable based upon the yaw moment actually generated by the road reaction force on each wheel. More specifically, Critical yaw moment is defined as a yaw moment which can be generated on a wheel when a road reaction force is maximized by varying the slip angle of the wheel while its longitudinal force component is kept constant, and the judgement of the behavior may be done by using the sum of the presently generated yaw moments by the front wheels of the vehicle and the critical yaw moments by the rear wheels of the vehicle. The critical yaw moment reflects the critical limit of a road reaction force on a wheel.
If the sum of the yaw moments is out of a predetermined range, the vehicle may be judged under a spin or a drift condition. The spin condition may be defined as a condition where the magnitude of the sum of the yaw moments by the front wheels is larger than that of the critical yaw moments by the rear wheels. The drift condition may be defined as a condition where the magnitude of the sum of the yaw moments by the front wheels is smaller than that of the critical yaw moments of the rear wheels while, in the front wheels, the yaw moments are close to the critical yaw moments. In the above judgement, for practical purposes, a reference value and a phase advance, represented by −KI&bgr;dr, may be employed.
The driving and braking force controlling means may be also adapted to control the driving and braking forces on each of the wheels so as to produce a spin avoiding yaw moment and a drift avoiding yaw moment as the yaw moment required to be added to the vehicle body so as to stabilize the vehicle running. These yaw moments required to be added to the vehicle body may be calculated from the presently generated yaw moments and critical yaw moments with a control reference value, denoted by −&Dgr;Ms, &Dgr;Ms, −&Dgr;Md and &Dgr;Md, for practical purposes. The required yaw moment may be borne by one or more of the wheels which will effectively generate a yaw moment suppressing the spinning or drifting of the vehicle. For practical purpose, each required yaw moment borne by each wheel may be converted to a target longitudinal force.
Further, the driving and braking force controlling means may be also adapted to define normal running limits for a longitudinal force on each of the wheel and to limit a longitudinal force applied to each wheel in between the limits, thereby avoiding a slip of any of the wheel, such as wheel-spin and wheel-lock phenomena. The normal running limits may be set out individually for each of the wheels.
The driving and braking force controlling means may be provided with means to calculate a slip angle of each of the wheels; means to calculate a vertical load on each of the wheels; and means to calculate a maximum static frictional coefficient between each wheel and the road surface abutting thereon. From these parameters, it is possible to take the critical limit of the road reac

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Vehicle motion control device and method does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Vehicle motion control device and method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Vehicle motion control device and method will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3149937

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.