Optics: measuring and testing – Angle measuring or angular axial alignment – With screen
Reexamination Certificate
2000-12-01
2004-12-07
Pham, Hoa Q. (Department: 2877)
Optics: measuring and testing
Angle measuring or angular axial alignment
With screen
C033S277000
Reexamination Certificate
active
06829046
ABSTRACT:
SOURCE CODE APPENDIX
A source code appendix containing source code of two computer programs used in the present invention is appended hereto and includes two identical sets of CDROMs, each set consisting of two CDROMs. Each CDROM set contains an ASCII file and an executable file for a calibration program and a user program.
A CDROM Table identifying the names of the files, the dates of creation of the files, and the sizes of the files for each CDROM of each set of CDROMs is attached at the end of the specification. These tables are entitled CDROM Table in ASCII Format and CDROM Table in Executable Format, respectively. The source code appendix also includes 6 sheets of microfiche containing a total of 380 frames of the user program. The entire source code appendix is incorporated into the specification of the present application by reference.
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention is broadly concerned with apparatus for determining deformation in vehicle bodies and the like, using a laser scanning apparatus in conjunction with a plurality of coded targets suspended from (or in known relationship to) known reference points on the vehicle to calculate three dimensional spatial coordinates defining the actual positions of the targets, and to compare such calculated positions with manufacturer-provided specification values. More particularly, the invention is concerned with such apparatus and corresponding methods wherein use is made of a plurality of vertically spaced apart scanning laser beams, permitting determination of whether individual ones of the coded targets are in plumb relative to the vehicle, and the extent of target inclination; in this way, more accurate vehicle body measurements are obtained. In addition, the preferred scanning apparatus has a stationary central laser assembly, a pair of upright, rotatable mirrors, associated laser detectors and on-board scanner electronics all located within an enclosed housing, thereby minimizing ambient contamination of the scanning apparatus through accumulation of dust or the like within the scanning apparatus.
2. Description of the Prior Art
In the past, vehicles such as automobiles have structural frames on which body panels and the like were built. Repair of accidental vehicle damage often involved straightening the frame and reshaping or replacing body panels. In order to meet government-imposed fuel consumption standards, unibody construction was adopted for many vehicles. In a unibody vehicle, no distinct frame exists apart from the body panels; instead, like an egg carton, the panels together form a “unibody”, with consequence substantial weight savings.
With either form of vehicle, frame or unibody, repair is greatly speeded with improved quality, by use of a frame (and unibody) straightening machine such as described in U.S. Pat. No. RE 31,636. While such straightening machines are highly effective, such machines do not by themselves provide information as to the extent of straightening to be accomplished. Vehicles currently have manufacturer-provided reference points, such as reference openings or holes located at established points on the vehicles. Manufacturers also provide specifications for the correct three-dimensional spatial locations of these reference points relative to each other. Thus, if a vehicle is damaged, these reference points may be moved from their normal or “specification” positions with respect to each other. Most, if not all, vehicle frame and unibody straightening jobs require return of the vehicle reference points to within manufacturer specifications.
U.S. Pat. No. 5,801,834 describes a significant advance in the vehicle straightening art, and apparatus in accordance therewith has been commercialized by Chief Automotive Systems of Grand Island, NE. Specifically, this patent discloses a laser generating unit located beneath a vehicle and in an orientation for sweeping laser beams across the reflective surfaces of coded targets suspended from or in known relationship to the vehicle reference points. Preferably, a laser beam is split into two beams using a 50/50 beam splitter, with each beam then being directed to a rotating mirror. The rotating mirrors direct the laser beams in a 360° circle, with both beams being directed in a single plane. Each laser beam is reflected back to its source when it strikes the reflective stripes of the coded targets. These reflected beams are registered as “on” events (or counts) by the electronics on board the laser measuring device. A counter counts the number of counts (as measured by an oscillator) from zero to the edge of each reflective
on-reflective border on the targets. An associated microprocessor receives the count information for each target and computes the angle from the center of each mirror to the center of each target. With the two angle measurements (one for each mirror and target) and the known baseline between the two mirrors, the planar (X, Y) coordinates of each reference hole are computed using trigonometry. The third coordinate (Z) is calculated using Z-coordinate representative sizing of the reflective and non-reflective strips on the coded targets. The actual three-dimensional spatial coordinates of each reference hole relative to a calculated point and plane are determined and displayed by the computer, along with the deviation from the normal or specification value provided by the vehicle manufacturer's data. With this information, the operator may then straighten the frame or unibody, with successive measurements being taken to monitor the progress of the straightening operation and determination of when the frame or unibody is properly straightened.
It Willie appreciated that the system described in the '834 patent assumes that all of the vehicle targets will be essentially in plumb. However, in practice this is not always the case. For example, targets may not assume a plumb orientation owing to interference between the targets and vehicle components, particularly with damaged vehicles. Furthermore, many straightening shops are operated in open air so that the cantilever-suspended targets are subject to wind-induced oscillations. Whatever the cause, non-plumb targets detract from the desirable degree of accuracy which can be obtained using scanning laser devices of the type described in the '834 patent.
SUMMARY OF THE INVENTION
The present invention overcomes the problems outlined above, and provides an improved laser scanning system, and corresponding methods, for determining frame or unibody alignment of a vehicle. The system includes a scanning apparatus together with at least one reflective laser beam target adapted for placement in a known relationship relative to a selected reference point on a vehicle to be scanned. The scanning apparatus includes a laser assembly operable to direct laser beams toward the vehicle target, and a detector for receiving reflected laser beams from the target. In the invention the laser assembly is operable to direct a pair of individual laser beams spaced vertically from each other by a known distance toward the target, and to detect the reflected beams from the target. In this way, using a microprocessor operably coupled with the scanning apparatus, it is possible to calculate individual, upper and lower, three-dimensional spatial coordinates of the target using the respective vertically spaced apart laser beams. This in turn permits determination of whether the target is truly in plumb (i.e., vertical), and the extent of deviation from plumb for the target.
In preferred forms, the laser assembly includes a pair of laser units, with each laser unit including a pair of vertically spaced apart lasers. The laser assembly is preferably stationary, with the overall apparatus including a pair of rotating mirror assemblies respectively located on opposite sides of the laser assembly. Each such mirror assembly comprises an upright mirror having a relatively wide reflective surface and a relatively narrow reflective edge; this permits discrimination be
Groothuis David Scott
Hanchett Michael Thomas
Delaware Capital Formation Inc.
Elliott Kyle L.
Pham Hoa Q.
Spencer Fane Britt & Browne LLP
LandOfFree
Vehicle measuring system does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Vehicle measuring system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Vehicle measuring system will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3297664