Vehicle impact responsive multiple bladder seating and...

Chairs and seats – Bottom or back with means to alter contour – Providing support for lower back region

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C297S284100

Reexamination Certificate

active

06203105

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to vehicle seating with inflatable air cells for controlling the contour of the seat to enhance comfort and more particularly to such seats having an array of air cells in the seat back.
BACKGROUND OF THE INVENTION
Inflatable air cells have been used in a variety of configurations to provide adjustments to the contour of a seat and in this manner enhance the comfort of the individual using the seat. This is especially important in automobiles where long periods of driving can cause pain and distraction or in other seating applications where individuals are sedentary for long periods of time.
The seating system described in U.S. Pat. No. 4,915,124 involves a simple system of multiple air cells in which each cell is connected through a valve to a source of pressurized air in a manner which allows for simultaneous inflation or deflation of the cells in response to a manually operated switch.
Another air cell inflation system is shown in U.S. Pat. No. 5,263,765. This device inflates the air cells according to two predetermined modes, through tubes individually controlled by valves which are in turn controlled by a microcomputer. The microcomputer is responsive to the fatigue of the driver as represented by seat belt displacement.
The air cells of U.S. Pat. No. 4,722,550 are adjusted in response to engine speed or steering angle and allows for selective inflation between two zones of air cells, one at the sides and one for the bottom and back of the seat. One valve controls each of the zones and is actuated by a microcomputer which receives sensed signals relative to the operating parameters of the automobile.
A manually operated power control system for a lumbar cushion is described in U.S. Pat. No. 4,707,027. A complex seating mechanism is devised to allow the operator to inflate and deflate the cushion while sensing pressure in the cushion to limit actuation of the system to prevent damage thereto.
U.S. Pat. No. 4,833,614 shows a system by which an air cell can be inflated to a selected pressure by sensing the actual pressure, comparing it to the pressure selected and then adjusting the air supply to inflate or deflate the air cell to the selected pressure. In this case the microcomputer converts the pressure signal it receives to a time based signal relative to the period necessary to run the pump to obtain the selected pressure. The pressure is sensed directly from sensors within the air support.
The above systems are limited either to narrow preset operational boundaries if responsive to vehicle operation or occupant movement or rely on the operator to provide a manual interactive response. Although each attempts to improve the comfort of the user and adjust in some manner to the variety of shapes and sizes of the user, each falls short because of the inherent limitations in the particular system.
In addition to inflatable air cells that have been used as a means to actuate adjustment mechanisms for altering the contour of a seat for many years, other adjustment is desirable to customize the seat contour to a particular user. In applications such as automobile seating where fatigue may become a factor, it is of particular interest to provide adjustment from user to user and during use by an individual. Air cells have also been used to adjust the tactile support for such critical regions as the lumbar portion of the back that is particularly susceptible to fatigue. In this instance the air cell provides direct support and not just an adjustment mechanism.
An air cell adjustment mechanism of such tactile support systems is shown in U.S. Pat. No. 5,137,329. This patent describes a support structure consisting of front and back plates between which are sandwiched two air cells. The air cells may be selectively inflated and deflated to provide pivoting adjustment motion to the front plate that provides the support contour for the seat back.
Tactile adjustment is provided by the air cell of U.S. Pat. No. 4,807,931 which is also mounted in a seat to provide the support contour for directly engaging the lumbar region of the user's back.
In addition to the aforesaid systems other vehicle seating systems having included an array of air cells in the seat back or as part of the head rest with the air cells being selectively inflated to control the contour of these parts of the seating system for comfort considerations. Examples of such systems are shown in U.S. Pat. Nos. 4,720,146; 4,840,425; 5,135,282; 5,558,398 and 5,772,281.
In addition to the aforesaid vehicle seating systems it is known in the prior art to provide acceleration responsive inflatable air cells to aid in positioning a seat occupant within the seat structure. One example of such an arrangement is shown in U.S. Pat. No. 4,634,083 wherein an acceleration signal will control an air cell array in a helicopter seat to isolate the occupant from helicopter vibrations. U.S. Pat. No. 5,427,331 discloses an aircraft ejection system that upon sensing ejection will rapidly deflate a pneumatic cushion to assure that the occupant is seated against a firm seat surface as the rapid acceleration of seat against occupant occurs so as to avoid spinal injury. U.S. Pat. No. 5,707,109 discloses a vehicle seat that has inflatable side bolsters that are inflated in response to lateral vehicle acceleration to provide additional occupant side support during vehicle turns.
While suitable for their intended purpose, the various known vehicle seat systems with inflatable air cells for contour shaping of the vehicle seat surface to enhance comfort do not provide for air cell pressure control in response to vehicle impact that can cause the occupant to slam against a seat back and head rest structure following vehicle impact. In seating structures without air cells, such movement can cause the occupant to be in contact with hard seating structure or the hard mechanical components of metallic lumbar support systems.
SUMMARY OF THE INVENTION
A system of inflatable air cells is constructed and installed in a seat at locations that are strategic to the comfort of the user and furthermore to provide a pneumatic barrier or cushion that protects an occupant against contact with hard seating or lumbar adjustment components.
In one working embodiment, such pneumatic barrier or cushion is provided by air cells that are connected to a pump through a manifold that simultaneously or sequentially, as desired, connects each cell to the pump. The manifold controls the flow of fluid in the air cell distribution system by means of a system of valves and senses the pressure in each cell by means of one or more transducers. A microcomputer's non-volatile memory is programmed with data representing a desired comfort level for each of the air cells. By sequentially activating individual manifold valves, a pressure signal from the transducer can be generated for each cell. The pressure signals are received by the microcomputer and are compared with the predetermined comfort data to generate a control signal that activates the pump or opens the exhaust valve. In a preferred embodiment, proportional control is used to regulate pressure in any air zone. The cells can be individually inflated or deflated to the desired pressure level. By varying the number and location of the cells the system becomes responsive to the localized pressures exerted on the body for a great variety of uses. Additionally, in accordance with the present invention, air cells forming the contouring elements of the seat back and a head rest surface have their pressure controlled in response to vehicle impact to cushion occupant contact with hard seating or lumbar adjustment mechanisms following either rear or frontal vehicle impacts.
One purpose of this invention is to provide a pneumatically controlled back seat surface for a vehicle having an array of air cells, each connected to a source of pressurized fluid (air), and arranged in a manner to, in response to vehicle impact, provide a pressurized air cell or air cells in the seat that will cushi

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Vehicle impact responsive multiple bladder seating and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Vehicle impact responsive multiple bladder seating and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Vehicle impact responsive multiple bladder seating and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2448871

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.