Vehicle having improved fuel, lubrication and air intake...

Marine propulsion – Means for accomodating or moving engine fluids – Cooling for engine

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06592415

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to a vehicle, such as a watercraft. More specifically, the invention relates to a watercraft including personal watercraft, having improved fuel, lubrication and air intake systems.
BACKGROUND AND SUMMARY OF THE INVENTION
Vehicles including those of the type known as personal watercraft, are commonly powered by internal combustion engines, which are arranged to drive a propulsion device for propelling the vehicle. In personal watercraft, internal combustion engines are generally positioned within their hulls and these engines are generally arranged to drive a water propulsion device for propelling the craft.
As is well known, it is undesirable to allow water to enter the intake system of such an engine, as the water may mix with air within the combustion chamber(s) and cause the engine to stall or stop. Water can remove lubrication from the cylinder wall, causing piston seizure, and water in the crankcase may lead to corrosion of the crankcase, and needle bearings. Generally, watercraft have a sealed hull assembly, including a hull and a deck, with vent openings that enable ambient air to enter the hull assembly for use by the engine during combustion. Air conduits transport the air from the vent openings to vent hoses. The vent hoses open generally downwardly to direct the air to the bottom of the watercraft so that at least some of the water present in the air will drop out of the air to the bottom of the hull and flow to the bottom of a bilge for drainage. The air within the hull assembly is drawn through an airbox, which is connected to the engine.
Conventional airboxes communicate with the air compressor by using a hose that slides over an outlet of the airbox. Typically, the hose is attached to the outlet of the air box with a clamp which is clamped to the outside of the hose. The use of hoses and clamps to connect the airbox and the throttle body requires additional assembly steps which raise assembly cost and time of the watercraft. Likewise, maintenance, repair and lubrication may be more difficult.
Consequently, there exists a need in the art for a simpler and more cost-effective way of connecting an air/water separator to the air compressor.
To achieve this need, a watercraft comprising a hull, an engine system, a propulsion system, and an air/water separator is provided. The engine system has an internal combustion engine and an air intake for supplying air to the engine. The engine system communicates with the fuel supply. The propulsion system is connected to the engine and propels the watercraft along a surface of a body of water using power from the engine. The air/water separator comprises a container enclosing an interior space. The container has an inlet port and an outlet port. The inlet port enables ambient air to enter the container and the air/water separator comprises structure that is constructed and arranged to separate water suspended in the air from the air as the air passes through the container. The outlet port is in fluid communication with the air intake of the engine system so as to enable ambient air to be drawn into the air intake through the inlet port, the interior space and the outlet port. A conduit, which could include a throttle body, has a first end connected to the air intake of the engine system and an opposite end disposed within the outlet port of the air/water separator. The opposite end of the conduit is secured in sealed relation within the outlet port solely by a cooperation between the opposite end of the conduit and the outlet port which occurs upon movement of said air/water separator into its installed position. This cooperation may occur as a result of a friction fit between the outlet port and conduit opposite end, a snap-fit between the outlet port and conduit opposite end, a snap or friction fit between other structures on the air/water separator and structures on the conduit or structure associated therewith. The advantage is that no additional fasteners are required to make the connection because the connection occurs upon movement of the air/water separator into its installed position.
Internal combustion engines of watercraft require lubrication, both of the engine crankcase, and of other associated parts. The engines generally have oil supplied thereto via oil supply lines which are connected between an oil reservoir and the engine. More specifically, oil may be directly delivered to the crankcase to lubricate the pistons and likewise may be delivered to an air compressor for lubrication of that device. In some engine configurations, oil may be returned to the oil reservoir by an oil return line. Occasionally, the oil being returned may have air entrained therein, which is returned directly to the oil reservoir. This can create problems of high pressure and/or emulsion/bubbles in the oil reservoir. Preferably, the oil could be recovered and reused to further lubricate the engine without also delivering the entrained air to the oil reservoir.
Consequently, there exists a need in the art for an oil/air separator to separate the oil and the air from the oil/air mixture so that the separated oil may be returned to the oil reservoir and the separated air may be returned to the engine or vented to the atmosphere.
To meet this need, a watercraft comprising a hull, a fuel supply, an engine system, a propulsion system, an oil reservoir, an oil supply line, an oil pump, an oil/air return line, and a filler neck is provided. The engine system has an internal combustion engine and an air intake for supplying air to the engine. The engine system communicates with the fuel supply. The engine generates power by combusting a mixture comprising air supplied from the air intake and fuel from the fuel supply. The propulsion system is connected to the engine and propels the watercraft along a surface of a body of water using power from the engine. The oil reservoir contains a supply of oil to be supplied to the engine system for lubrication thereof. The oil supply line communicates with the oil reservoir and the engine system to enable oil to flow to the engine system. The oil pump is disposed in fluid communication with the oil supply line and pumps the oil from the oil reservoir to the engine system through the oil supply line. An oil/air return line communicates with the engine system and the oil reservoir. A filler neck has a filling opening in communication with the oil reservoir and further includes an oil/air separator. The oil/air separator has an inlet port in communication with the oil/air return line, and an outlet port communicating with the oil reservoir. The inlet port enables a mixture of oil and air from the engine system to enter the oil/air separator. The oil/air separator further includes structure to separate air entrained in the oil from the oil as the oil passes through the oil/air separator to allow the separated oil to be returned to the oil reservoir via the oil outlet port while the air is vented to the atmosphere or the throttle body.
Over a period of use, the internal combustion engine of the watercraft will require maintenance. Prior to performing maintenance activities, it is common practice to drain the fuel from the various fuel system components. Of particular importance are the fuel supply line, which connects the fuel tank with the fuel regulator to supply fuel from the fuel tank thereto, and the fuel return line, which connects the fuel regulator to the fuel tank to return excess fuel to the fuel tank.
Conventional methods of draining the fuel lines detach one fuel line from the fuel regulator, such as the fuel supply line. However, since the fuel between the fuel pump and the fuel regulator is maintained at a high pressure, fuel may be expelled under pressure from the detached end of the fuel supply line. This is problematic in watercraft because the hull assembly is watertight and there is no drainage for such fuel if it is expelled into the hull assembly. Moreover, it is preferable to avoid the requirement of providing a receptacle f

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Vehicle having improved fuel, lubrication and air intake... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Vehicle having improved fuel, lubrication and air intake..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Vehicle having improved fuel, lubrication and air intake... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3086558

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.