Vehicle engine system additive dispenser

Fluent material handling – with receiver or receiver coacting mea – Plural materials – material supplies or charges in a receiver – Plural charges from the same source

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C141S098000, C141S392000, C220S086200

Reexamination Certificate

active

06263924

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to a dispensing system for a fuel additive (or treatment agent) which may be used in the operation of a vehicle. It relates more particularly to a dispensing system for dispensing a liquid fuel additive into the fuel additive storage container in a vehicle at the same time that the vehicle is fueled from a fuel pump.
BACKGROUND OF THE INVENTION
Conventionally, road vehicles have operated with fuel, usually a hydrocarbon fuel such as gasoline, road diesel fuel, or even compressed natural gas, stored onboard the vehicle with the supply replenished at intervals as the fuel is consumed. Typically, liquid fuel such as gasoline and diesel fuel are replenished from dispensing units commonly referred to as fuel pumps at roadside service stations. Other consumables used in the vehicle, such as engine oil, transmission fluid and other fluids, are generally replaced only when the vehicle is serviced at extended intervals, generally at intervals of a few thousand miles. Thus, the only consumable material requiring frequent replenishment has been the fuel.
Current concerns about the environmental effects of the internal combustion engine have led to regulations on vehicle emissions, both evaporative and combustive, and significant efforts have been made in the vehicle industry as well as the fuel industry to reduce levels of emission, especially of pollutants such as sulfur oxides (SO
x
), nitrogen oxides (NO
x
) and carbon monoxide (CO). Significant improvements have been achieved by the use of catalytic converters onboard vehicles but further improvements are desired, particularly with respect to nitrogen oxide emissions. Unlike emissions of sulfur oxides which are dependent upon the amount of sulfur in the fuel, a factor which is capable of control by suitable refining technology, nitrogen oxides tend to be produced primarily by a combination of atmospheric nitrogen and oxygen under the conditions encountered in the combustion chamber of an internal combustion engine.
Nitrogen oxides may be reduced to nitrogen by reaction with ammonia under selective catalytic reduction (SCR) conditions, but as ammonia would present hazards in the event of an accident to a vehicle containing it, it is unattractive for use in conventional road vehicles. One alternative, however, is the use of urea as a source of ammonia because urea can undergo thermal decomposition and hydrolysis to form ammonia, which then reacts with nitrogen oxides under SCR conditions in a suitable catalytic converter. Although urea is a solid, it can be used in the form of an aqueous solution, which is convenient for storage on the vehicle during use and for dispensing into the vehicle. An aqueous urea solution can also be injected into the engine/exhaust system to undergo thermal decomposition and hydrolysis to form ammonia, which can then react with nitrogen oxides as desired. Provided that the aqueous system can be prevented from solidifying by addition of suitable additives, aqueous urea solutions represent a desirable solution to the problem of controlling emissions of nitrogen oxides.
Of particular importance for aqueous urea solutions is the prevention of solidification at the low temperatures usually encountered by vehicle users in the colder climatic regions. Freezing is a particular problem of aqueous-based solutions thus creating a need for liquid exhaust treatments that will maintain the liquid state down to storage temperatures of at least about −20° F. (about −30° C.). In consideration of the potential application of SCR methods for the lowering of nitrogen oxide emissions in motor vehicle exhaust, specific urea formulations that will resist freezing at low temperatures are especially desirable.
Constraining design factors pertaining to fuel additive dispensing systems include that the additive dispensing and emission control systems be robust, easy to use and maintain by skilled and unskilled persons, and be inexpensive in view of the large number of road vehicles currently in use and the social need for improved vehicle technology to be readily accessible to all members of the community. Therefore, the vehicle may be equipped with a self-contained system that provides the vehicle with sufficient fuel additive (treatment agent) such that replenishment is necessary only at extended intervals coinciding with the regular service intervals of the vehicle. However, with service intervals, whether for oil changes or mechanical attention, becoming necessary only at increasingly extended intervals, it is possible that the supply of fuel additive could become depleted between regular servicing intervals, particularly if the need for regular servicing is neglected, as it often is. Alternatively, the vehicle may be equipped with a system that replenishes the supply of fuel additive or treatment agent whenever the fuel is replenished, thereby ensuring that the supply of treatment agent or fuel additive is available as long as fuel is available. From the point of view of ensuring constant supply of the fuel additive or treatment agent, this approach is preferred.
Dual tank systems generally have been described in U.S. Pat. Nos. 3,884,255 and 4,852,892. These systems, however, possess dual tanks that are designed to hold identical liquids and are either filled separately or simultaneously by means of a cross-over connection between tanks. Similarly, the systems described in U.S. Pat. Nos. 4,161,160 ('160 patent), 4,596,277 ('277 patent), and 5,331,994 ('994 patent) contain a fuel additive tank and at least one fuel tank. The systems disclosed in the '160, '277 and '994 patents, however, are not designed to feed fuel additive and fuel individually, but simultaneously, during replenishment. For example, the '160 patent discloses a diesel fuel supply system in which the fuel additive is added to the fuel tank. Similarly, the '994 patent is directed to an additive dispensing system in which metered quantities of fuel additive are added to fuel in a fuel tank. Furthermore, the '277 patent discloses a metering system for adding a fuel additive to fuel in the fuel tank of an internal combustion engine.
From the point of view of convenience to the vehicle operator, it is desirable that the treatment agent or fuel additive be added at the same time as the fuel, without any additional effort or manipulation on the part of the operator, and further to ensure that replenishment of the treatment agent takes place substantially concurrently with the fueling process. The present invention is directed to an integrated dispensing system which meets these requirements.
SUMMARY OF THE INVENTION
The present invention provides a dispensing system for co-delivery of fuel and a fuel additive (or treatment agent) which is used in the operation of a vehicle, for example, an exhaust after-treatment agent which is used in the form of a liquid that is consumed during vehicle operation. Agents of this kind include aqueous solutions of urea, either as such or with other additives as described in copending U.S. patent application Ser. No. 09/444,103 entitled “Liquid Urea Exhaust Gas Treatment Additive”, R. W. Grosser (inventor), Mobil Case No. 10089-1, PL 98-64, filed Nov. 22, 1999. Other fuel additives include gasoline performance enhancers as known in the art including, but not limited to, octane enhancers, detergents, and lubricity additives.
The dispensing system of the present invention has two subsystems: a mobile subsystem incorporated into a vehicle, and a stationary subsystem incorporated into a vehicle fuel dispenser, commonly known as a fuel pump. The mobile subsystem comprises a storage container for the fuel additive or treatment agent within the vehicle with a level sensor to determine the amount of fuel additive in the storage container. Instead of a level sensor, the mobile subsystem may comprise a mechanical level indicator. The storage container may conventionally be a tank with a suitable vent tube mounted within the vehicle, and bec

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Vehicle engine system additive dispenser does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Vehicle engine system additive dispenser, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Vehicle engine system additive dispenser will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2482490

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.