Vehicle compass system with continuous automatic calibration

Geometrical instruments – Indicator of direction of force traversing natural media – Magnetic field responsive

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C033S357000, C033S361000, C702S085000

Reexamination Certificate

active

06643941

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to magnetic direction sensing systems and particularly those for use in vehicles.
U.S. Pat. No. 4,953,305, assigned to the present assignee, discloses a magnetic field sensor and microprocessor-controlled compass system for a vehicle. The system utilizes flux-gate magnetic sensors to sense the magnitude of the earth's magnetic field in two channels of measurement. The sensor data, if plotted on an X-Y Cartesian coordinate plane, would be as shown in FIG.
1
. For a properly calibrated compass, the plot of sensor data creates a perfect circle centered around the origin of the coordinate plane when the vehicle travels in a 360° loop, as indicated by graph A of FIG.
1
. The radius of the circle represents the detected earth's magnetic field strength, and the vehicle's compass heading at a particular time during travel is represented by a point on the circle. By calculating the angle at which the point forms with the X-Y coordinate plane, the compass heading of the vehicle may be determined. As is known, depending on the location of the vehicle, the detected magnitude of the earth's magnetic field can vary significantly.
The sensed magnetic field will also be affected if there is a change in vehicular magnetism. Changes in the magnetism of a vehicle can be caused by, for example, driving the vehicle near the electrical power feeders of train or subway systems, installing a magnetic cellular antennae on the vehicle's roof, parking under an AC powerline, or even driving through a car wash, which can flex the sheet metal in the vicinity of the compass sensor and change its magnetic characteristics. Such a change in vehicular magnetism will cause the magnetic field sensed by the compass channels when the vehicle is heading in a given direction to be either greater than or less than that expected for a vehicle with no magnetic interference. As a result, the plot of sensor data will be shifted away from the origin of the coordinate plane in some direction, resulting in a pattern such as the circle shown as graph B of
FIG. 1
when the vehicle travels a 360° loop. The magnitude of the shift of sensor data from the origin is proportional to the magnitude of the change in vehicular magnetism.
The compass system of the above-mentioned patent provides automatic and continuous calibration to account for changes in the vehicle's magnetism, and thus the system's reaction to the earth's magnetic field during the life of the vehicle. The calibration system includes means for testing the data received from the compass sensor to determine the maximum and minimum signal levels during movement of the vehicle through a completed 360° path of travel however circuitous the path may be. This data is averaged over several such paths of vehicular travel to provide continuously updated and averaged compensation correction information. The automatic and continuous calibration is capable of correcting the compass system when the plot of sensor data experiences small shifts away from the origin of the coordinate plane due to small drifts in vehicular magnetism. The origin of the coordinate plane in these circumstances is still contained within the circle plotted when the vehicle travels a 360° loop, and the crossings of the sensor data on the axes of the coordinate plane are used to calculate the spans of the signal levels along each axis which determine the center of the circular plot of sensor data. Compensation signals are then generated based on the difference between the center of the circle and the origin of the coordinate plane. However, if the shift of sensor data is large enough such that the origin of the coordinate plane is not contained within the circular plot of sensor data created when the vehicle travels a 360° loop, then heading information cannot be calculated and the calibration system cannot provide correction in this somewhat unusual situation unless the sensor data experiences a subsequent shift that causes the origin of the coordinate plane to again be contained. Because such a subsequent shift may never occur or, if it does, may occur only after an undesirably long period of time, the compass system of the above-mentioned patent provides means to reinitiate calibration in these situations.
Reinitiation of calibration involves the collecting and centering of spans of sensor data followed by the collecting and centering of two circles of sensor data, which causes the origin of the coordinate plane to coincide with the center of the circular plot of sensor data. As such, the reinitiation process enables the compass system to recover from any change in vehicular magnetism and to provide accurate heading information. In order to detect situations where reinitiation of the calibration system is desirable, it is known to have the compass system maintain saturation limits at the outer boundaries of the range of measurement of the sensor data. For 8-bit sensor data, these saturation limits are at 0 and 255, as shown in FIG.
1
. If a large change in vehicular magnetism causes the sensor data to shift and the current data is plotted outside of these limits for a continuous period of five minutes, then calibration is restarted. Such a shift is shown by graph C of
FIG. 2
, with the dashed portion thereof indicating the range of heading directions of the vehicle that would cause the sensor data to remain outside of the saturation limits. However, intermediate changes in vehicular magnetism are possible which, while causing the plot of sensor data to shift and to not contain the origin of the coordinate plane when the vehicle completes a 360° loop, do not cause the sensor data to be plotted outside of the saturation limits. Such a shift is shown by graph D of FIG.
3
. As such, it is known to also provide for a reinitiation of calibration if 15 ignition cycles of at least 5 minutes duration are completed without obtaining a crossing point on the axes of the X-Y coordinate plane. Furthermore, it is known to enable the operator of the vehicle to manually reinitiate calibration by operating a switch, button, or the like. Manual reinitiation would most likely occur when the operator notices that the displayed heading information is erroneous for an extended period of time. Although the above-mentioned means by which to cause reinitiation of calibration enables the compass system to ultimately recover from changes in vehicular magnetism of any magnitude, such reinitiation is considered a rather extreme measure since it requires the clearing of all prior sensor readings and calibration data. Thus, until sufficient data is collected to calibrate the system, the system operates in an uncalibrated state.
Although this system is a substantial improvement in vehicle compass operation and provides more accurate heading information over differing operating conditions, its somewhat lengthy averaging process and method of gradual compensation makes it primarily suited for the compensation of slow and gradual changes in vehicular magnetism. As such, this compass system may be unable to adequately compensate for and recover from an abrupt and significant change in vehicular magnetism caused by, for example, driving the vehicle near the electrical power feeders of train or subway systems. Thus, such an event may cause a substantial impairment of compass operation resulting in at least short-term erroneous heading information to be displayed until recalibration or reinitialization of the system is achieved.
Further, a particular problem with vehicular magnetism exists before sale of a new vehicle to a customer. At this time, the vehicle may be substantially magnetized due to either the manufacturing process or the method of delivery of the vehicle to the dealer. In order to ensure that the compass system is providing accurate heading information upon initial power-up by the customer, changed or existing vehicular magnetism must be compensated for or eliminated. The means chosen to perform this function should be easy an

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Vehicle compass system with continuous automatic calibration does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Vehicle compass system with continuous automatic calibration, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Vehicle compass system with continuous automatic calibration will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3135602

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.