Vehicle clutch driving device and gear shifting device of...

192 clutches and power-stop control – Transmission control and clutch control – Common control

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C192S003580, C192S084600

Reexamination Certificate

active

06629589

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a vehicle clutch driving device and a gear shifting device of a vehicle transmission. More specifically, the present invention relates to a vehicle clutch driving device in which motors are used and to a device for driving the transmission by using motors.
2. Background Information
Manual transmissions are mainly employed in large vehicles such as a buses and trucks. In a conventional manual transmission, a change lever by the driver's seat and the transmission are mechanically connected by a linkage such as a control rod. Therefore, to drive a gear mechanism a shifting operation or operations are necessary. If the shifting operation is frequently required, the shifting operation becomes a great burden on the driver. Therefore, to solve this problem, a remotely operated manual speed change gear in which a gear shifting device is provided for a manual transmission. A transmission ECU for controlling the gear shifting device by using an electric signal has been developed. With this structure, shifting can be conducted by a small force from merely operating the change lever and the burden due to the shifting operation on the driver is reduced. Moreover, an automatic transmission in which a clutch actuator automatically engages and disengages a clutch is provided. A speed changing operation can be conducted without pressing the clutch pedal in order to further reduce the burden on the driver due to the shifting operation. There is also a so-called semiautomatic transmission in which it is possible to selectively switch between an automatic transmission and a manual transmission.
The clutch actuator for driving the clutch in response to the signal from the above-described transmission ECU is formed of a master cylinder, a motion direction converting mechanism, and a motor, for example. The master cylinder is connected to a slave cylinder disposed in a vicinity of a release device of the clutch. The motion converting mechanism is formed of a rod, a worm wheel, and a worm gear. The rod contacts a piston of a master cylinder. The worm wheel is fixed to an opposite end of the rod to form a crank mechanism. The worm gear is engaged with the worm wheel and fixed to a rotary shaft of a motor. If the motor rotates, the worm gear rotates the worm wheel. As a result, the rod moves linearly to drive the piston of the master cylinder. Thus, hydraulic pressure is supplied from the master cylinder to the slave cylinder and the slave cylinder drives the release mechanism thereby to disengage the clutch.
In a conventional manual transmission, a plurality of transmission racks is arranged in a select direction. The gear shifting device provided to the manual transmission shifts gears by driving the selected transmission rack in a shifting direction.
The gear shifting device includes a lever, a select direction moving mechanism, and a shift direction moving mechanism. The lever has one end which can be engaged with each rack. The select direction moving mechanism engages an intermediate portion of the lever for rotation. The select direction moving mechanism can move the lever in the select direction. The shift direction moving mechanism moves the transmission racks in the shift direction with one end of the lever by being engaged with and driving the other end of the lever. Each moving mechanism is formed of a ball screw mechanism for driving the rod in a longitudinal direction and a motor for applying a rotating force to the ball screw mechanism.
Driving the transmission racks and the disengaging/engaging operations of the clutch need to be conducted in a short time, but speed cannot be increased sufficiently due to an inertia component of the system.
In view of the above, there exists a need for vehicle clutch driving device and gear shifting device, which overcomes the above mentioned problems in the prior art. This invention addresses this need in the prior art as well as other needs, which will become apparent to those skilled in the art from this disclosure.
SUMMARY OF THE INVENTION
It is an object of the present invention to conduct clutch disengagement/engagement or gear shifting at high speeds in a clutch actuator in which motors are used.
A vehicle clutch driving device according to a first aspect of the present invention drives a vehicle clutch and includes a motion converting mechanism and two motors. The motion converting mechanism converts rotary motion to linear motion and applies an operating force to the clutch. The two motors apply a rotating force to the motion converting mechanism. In this clutch driving device, two motors are used, thus, the speed of the disengaging/engaging operations of the clutch can be increased.
A vehicle gear shifting device according to a second aspect of the present invention automatically shifts vehicle transmission gears and includes a motion converting mechanism and two motors. The motion converting mechanism converts rotary motion to linear motion and applies an operating force to the transmission. The two motors apply a rotating force to the motion converting mechanism. In this device, the two motors are used, thus, it is possible to shift gears at higher speeds than in the prior art.
A gear shifting device according to a third aspect of the present invention automatically shifts vehicle transmission gears and includes a first motion converting mechanism, two first motors, a second motion converting mechanism, and two second motors. The first motion converting mechanism converts rotary motion to linear motion and applies an operating force in a select direction to the transmission. The two first motors are members applies a rotating force to the first motion converting mechanism. The second motion converting mechanism converts rotary motion to linear motion and applies an operating force in a shift direction to the transmission. The two second motors applies a rotating force to the second motion converting mechanism. In this device, because the two motors are used in each the motion converting mechanism, it is possible to shift gears at higher speeds than in the prior art.


REFERENCES:
patent: 4567969 (1986-02-01), Makita
patent: 5896963 (1999-04-01), Schwientek
patent: 6446522 (2002-09-01), Warren et al.
patent: 197 23 393 (1997-12-01), None
patent: 196 50 160 (1998-06-01), None
patent: 60-49130 (1985-03-01), None
patent: 3-239865 (1991-10-01), None

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Vehicle clutch driving device and gear shifting device of... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Vehicle clutch driving device and gear shifting device of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Vehicle clutch driving device and gear shifting device of... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3152148

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.