Vehicle chassis having systems responsive to non-mechanical...

Motor vehicles – Power – Electric

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C180S065510, C296S035300, C439S034000

Reexamination Certificate

active

06830117

ABSTRACT:

TECHNICAL FIELD
The invention relates to a vehicle chassis containing drive by-wire systems wherein the chassis is releasably engageable with a vehicle body.
BACKGROUND OF THE INVENTION
Mobility, being capable of moving from place to place or of moving quickly from one state to another, has been one of the ultimate goals of humanity throughout recorded history. The automobile has likely done more in helping individuals achieve that goal than any other development. Since its inception, societies around the globe have experienced rates of change in their manner of living that are directly related to the percentage of motor vehicle owners among the population.
Prior art automobiles and light trucks include a body, the function of which is to contain and protect passengers and their belongings. Bodies are connected to the numerous mechanical, electrical, and structural components that, in combination with a body, comprise a fully functional vehicle. The nature of the prior art connections between a vehicle body and vehicular componentry may result in certain inefficiencies in the design, manufacture, and use of vehicles. Three characteristics of prior art body connections that significantly contribute to these inefficiencies are the quantity of connections; the mechanical nature of many of the connections; and the locations of the connections on the body and on the componentry.
In the prior art, the connections between a body and componentry are numerous. Each connection involves at least one assembly step when a vehicle is assembled; it is therefore desirable to reduce the number of connections to increase assembly efficiency. The connections between a prior art body and prior art vehicular componentry include multiple load-bearing connectors to physically fasten the body to the other components, such as bolts and brackets; electrical connectors to transmit electrical energy to the body from electricity-generating components and to transmit data from sensors that monitor the status of the componentry; mechanical control linkages, such as the steering column, throttle cable, and transmission selector; and ductwork and hoses to convey fluids such as heated and cooled air from an HVAC unit to the body for the comfort of passengers.
Many of the connections in the prior art, particularly those connections that transmit control signals, are mechanical linkages. For example, to control the direction of the vehicle, a driver sends control signals to the steering system via a steering column. Mechanical linkages result in inefficiencies, in part, because different driver locations in different vehicles require different mechanical linkage dimensions and packaging. Thus, new or different bodies often cannot use “off-the-shelf” components and linkages. Componentry for one vehicle body configuration is typically not compatible for use with other vehicle body configurations. Furthermore, if a manufacturer changes the design of a body, a change in the design of the mechanical linkage and the component to which it is attached may be required. The change in design of the linkages and components requires modifications to the tooling that produces the linkages and components.
The location of the connections on prior art vehicle bodies and componentry also results in inefficiencies. In prior art body-on-frame architecture, connection locations on the body are often not exposed to an exterior face of the body, and are distant from corresponding connections on the componentry; therefore, long connectors such as wiring harnesses and cables must be routed throughout the body from componentry. The vehicle body of a fully-assembled prior art vehicle is intertwined with the componentry and the connection devices, rendering separation of the body from its componentry difficult and labor-intensive, if not impossible. The use of long connectors increases the number of assembly steps required to attach a vehicle to its componentry.
Furthermore, prior art vehicles typically have internal combustion engines that have a height that is a significant proportion of the overall vehicle height. Prior art vehicle bodies are therefore designed with an engine compartment that occupies about a third of the front (or sometimes the rear) of the body length. Compatibility between an engine and a vehicle body requires that the engine fit within the body's engine compartment without physical part interference. Moreover, compatibility between a prior art chassis with an internal combustion engine and a vehicle body requires that the body have an engine compartment located such that physical part interference is avoided. For example, a vehicle body with an engine compartment in the rear is not compatible with a chassis with an engine in the front.
SUMMARY OF THE INVENTION
A self-contained chassis has substantially all of the mechanical, electrical, and structural componentry necessary for a fully functional vehicle, including at least an energy conversion system, a suspension and wheels, a steering system, and a braking system. The chassis has a simplified, and preferably standardized, interface with connection components to which bodies of substantially varying design can be releasably attached. X-by-wire technology may be utilized to eliminate mechanical control linkages. Fuel cell technology may also be implemented in the energy conversion system.
A result is the reduction in the amount of time and resources required to design and manufacture new vehicle bodies. Body designs need only conform to the simple attachment interface of the chassis, eliminating the need to redesign or reconfigure expensive components.
The invention also allows a multitude of body configurations to share a common chassis, enabling economies of scale for major mechanical, electrical, and structural components.
Connection components, exposed and unobstructed, increase manufacturing efficiency because attachment of a body to the chassis requires only engagement of the connection components to respective complementary connection components on a vehicle body.
Vehicle owners can increase the functionality of their vehicles at a lower cost than possible with the prior art because a vehicle owner need buy only one chassis upon which to mount a multitude of body styles.
The above objects, features, and advantages, and other objects, features, and advantages, of the present invention are readily apparent from the following detailed description of the best mode for carrying out the invention when taken in connection with the accompanying drawings.


REFERENCES:
patent: 2303286 (1942-11-01), Lake
patent: 2927817 (1960-03-01), Raup
patent: 3722948 (1973-03-01), Walsh et al.
patent: 4165794 (1979-08-01), Warner et al.
patent: 4189864 (1980-02-01), Saito
patent: 4216839 (1980-08-01), Gould et al.
patent: 4363999 (1982-12-01), Preikschat
patent: 4422685 (1983-12-01), Bonfilio et al.
patent: 4489977 (1984-12-01), Earing, Jr.
patent: 4842326 (1989-06-01), DiVito
patent: 5058016 (1991-10-01), Davidovitch
patent: 5193635 (1993-03-01), Mizuno et al.
patent: 5352011 (1994-10-01), Kihara et al.
patent: 5366281 (1994-11-01), Littlejohn
patent: 5409283 (1995-04-01), Ban
patent: 5418437 (1995-05-01), Couture et al.
patent: 5534848 (1996-07-01), Steele et al.
patent: 5606603 (1997-02-01), Sizer et al.
patent: 5609353 (1997-03-01), Watson
patent: 5641031 (1997-06-01), Riemer et al.
patent: 5725350 (1998-03-01), Christenson
patent: 5813487 (1998-09-01), Lee et al.
patent: 5823636 (1998-10-01), Parker et al.
patent: 6059058 (2000-05-01), Dower
patent: 6097286 (2000-08-01), Discenzo
patent: 6102151 (2000-08-01), Shimizu et al.
patent: 6176341 (2001-01-01), Ansari
patent: 6195999 (2001-03-01), Arnold et al.
patent: 6208923 (2001-03-01), Hommel
patent: 6219604 (2001-04-01), Dilger et al.
patent: 6223843 (2001-05-01), O'Connell et al.
patent: 6305758 (2001-10-01), Hageman et al.
patent: 6318494 (2001-11-01), Pattok
patent: 6321145 (2001-11-01), Rajashekara
patent: 6361096 (2002-03-01), Kim
patent: 6370460 (2002-04-01), Kaufmann et al.
patent: 6378637 (2002-04-01), Ono et

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Vehicle chassis having systems responsive to non-mechanical... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Vehicle chassis having systems responsive to non-mechanical..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Vehicle chassis having systems responsive to non-mechanical... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3287085

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.