Vehicle air-conditioning system

Refrigeration – Automatic control – Responsive to vehicle body motion or traction

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C062S180000, C062S182000, C062S236000, C062S243000, C062S230000, C062S228500

Reexamination Certificate

active

06367270

ABSTRACT:

CROSS-REFERENCE TO RELATED APPLICATION
The present invention is related to Japanese patent application No. Hei. 11-365034, filed Dec. 22, 1999; the contents of which are incorporated herein by reference.
FIELD OF THE INVENTION
The present invention relates to a control mechanism for reducing electric power consumption of a vehicle air-conditioning system, and more particularly, to a control mechanism for reducing electric power consumption of a vehicle air-conditioning system having an air-conditioning compressor selectively driven by a vehicle engine or a motor while the air-conditioning compressor is driven by the motor.
BACKGROUND OF THE INVENTION
In a typical prior art vehicle air-conditioning system, a compressor is driven by a drive force transmitted from a vehicle engine via a belt to circulate a refrigerant within a refrigeration cycle. Thus, in a vehicle (eco-run car) that has the compressor driven by the described drive mechanism and also has a feature to automatically stall the engine while the vehicle is not running to protect the surrounding environment from the engine emissions, the compressor stops when the engine is stalled, resulting in stopping of the air-conditioning.
This fact constitutes one reason for preventing wide spread use of the eco-run cars. To address this disadvantage, Japanese Unexamined Utility Model Publication No. 60-155724 and No. 6-87678 discloses use of a motor for driving the compressor while the vehicle is not running. The motor is powered from a battery that is charged by a generator. The generator is driven by the engine while the vehicle is running.
In the prior art disclosed in the above publication, since the compressor is driven by the motor while the vehicle is not running (while the engine is not operated), a large capacity battery is required for supplying enough electric power to the motor.
If the large capacity battery is not provided, the engine must be restarted within a short period of time after the engine stall in order to prevent excessive discharge of the battery due to the power consumption of the motor during the non-running period of the vehicle. This fact deteriorates an advantageous fuel saving feature of the eco-run car.
SUMMARY OF THE INVENTION
It is therefore an objective of the present invention to reduce the power consumption of a vehicle air-conditioning system having a compressor selectively driven by a vehicle engine or a motor while the compressor is driven by the motor.
Another object of the present invention is to achieve a good balance between the power consumption reduction and a feeling of coolness in a vehicle air-conditioning system having a compressor selectively driven by a vehicle engine or a motor while the compressor is driven by the motor.
Another object of the present invention is to achieve a good balance between the power consumption reduction and anti-fogging performance in a vehicle air-conditioning system having a compressor selectively driven by a vehicle engine or a motor while the compressor is driven by the motor.
A further object of the present invention is to appropriately reduce the power consumption based on the amount of remaining charge in a battery in a vehicle air-conditioning system having a compressor selectively driven by a vehicle engine or a motor while the compressor is driven by the motor.
In a first aspect of the invention, to achieve the above objectives, a capacity of a blower and a capacity of a compressor are arranged in a refrigeration cycle while the compressor being driven by a motor is reduced in comparison to the capacity of the blower and the capacity of the compressor while the compressor is driven by a vehicle engine. Furthermore, while a cooling heat load of an evaporator is greater than a predetermined value, the capacity of the compressor is first reduced prior to reducing the capacity of the blower.
The capacity of the blower can be indicated by the amount of the air flow per unit time. The capacity of the compressor can be indicated by the amount of the refrigerant discharged from the compressor per unit time. When a variable displacement compressor is used as the compressor of the present invention, the capacity of the variable displacement compressor can be changed by adjusting a displacement of the variable displacement compressor. When a fixed displacement compressor is used as the compressor of the present invention, a capacity of the fixed displacement compressor can be changed by adjusting a ratio between an “ON” period and an “OFF” period (utilization rate) of the fixed displacement compressor. Furthermore, when the compressor is driven by the motor, the capacity of the compressor can be changed by controlling a rotation speed of the motor. Either the capacity of the blower or the capacity of the compressor while the compressor is driven by the motor is reduced.
Furthermore, while the cooling heat load of the evaporator is greater than the predetermined value, the capacity of the compressor is first reduced prior to reducing the capacity of the blower. Thus, when the cooling heat load of the evaporator is high, for example, when the outside air temperature is high during the summer, the power saving can be achieved by reducing the capacity of the compressor while maintaining the large capacity of the blower.
When the cooling heat load of the evaporator is high, rather than providing a lower temperature of the cool air blown out from the air-conditioning system, the higher air flow rate of the cool air should be provided to maintain the feeling of coolness.
In another aspect of the invention, at least the capacity of the blower or the capacity of the compressor while the compressor being driven by the motor is reduced in comparison to the capacity of the blower and the capacity of the compressor while the compressor being driven by the vehicle engine. Furthermore, while the compressor is driven by the motor, if the window glass of the vehicle is under a fog inducing condition, the capacity of the blower is first reduced prior to reducing the capacity of the compressor.
Furthermore, while the window glass of the vehicle is under the fog inducing condition, the capacity of the blower is first reduced prior to reducing the capacity of the compressor, so that, for example, under the low outside air temperature condition during the winter, power saving can be achieved by reducing the capacity of the blower while maintaining the large capacity of the compressor. As a result, the high dehumidifying capacity of the evaporator is maintained, and therefore the high anti-fogging performance of the air-conditioning system for preventing fogging of the vehicle window can be adequately provided.
In another aspect of the invention, while a blow mode is set to provide directional air toward the window glass of the vehicle, the capacity of the blower is not reduced even if it is determined that the window glass of the vehicle is under the fog inducing condition.
While the blow mode is set to providing directional air toward the window glass of the vehicle, the capacity of the blower is not reduced, so that the anti-fogging performance can be maximized at the sacrifice of power saving. As a result, fogging of the window glass of the vehicle can be cleared within a short period of time even while the compressor is driven by the motor (i.e., even while the engine is not operated).
In another aspect of the invention, there is provided means for changing the capacity of the compressor in a gradual manner. A rate of gradual change of the capacity of the compressor while the compressor being driven by the motor is set to be higher than that of the compressor while the compressor being driven by the vehicle engine.
With this arrangement, when the capacity of the compressor is reduced while the compressor is driven by the motor, the capacity of the compressor can be quickly reduced to improve the power saving.
In another aspect, the capacity of the compressor is adjusted to make an actual degree of coolness of the evaporator to coincide with a target value. A rate of c

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Vehicle air-conditioning system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Vehicle air-conditioning system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Vehicle air-conditioning system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2875453

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.