Vegetable oil based wax compositions

Fuel and related compositions – Candle composition

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C431S288000

Reexamination Certificate

active

06824572

ABSTRACT:

BACKGROUND
Candles have been known and used for illumination since early civilization. A typical candle is formed of a solid or semi-solid body of combustible waxy material and contains a combustible fibrous wick embedded within the waxy material. When the wick of a candle is lit, the generated heat melts the solid wax, and the resulting liquid flows up the wick by capillary action and is combusted. At present, although many advanced illuminating devices are available, candles are still popularly used for decoration or on a special situation as a holiday.
For a long time, beeswax was has been in common usage as a natural wax for candles. Over one hundred years ago, paraffin came into existence, in parallel with the development of the petroleum refining industry. Paraffin is produced from the residue leftover from refining gasoline and motor oils. Paraffin was introduced as a bountiful and low cost alternative to beeswax, which had become more and more costly and in more and more scarce supply. Beeswax presently costs about ten times the cost of paraffin wax.
Today, paraffin is the primary industrial wax used to produce candles. Conventional candles produced from a paraffin wax material typically emit a smoke and can produce a bad smell when burning. In addition, a small amount of particles (“particulates”) can be produced when the candle burns. These particles may affect the health of a human when breathed in.
Accordingly, it would be advantageous to have other materials which can be used to form clean burning base materials for forming candles. If possible, such materials would preferably be biodegradable and be derived from renewable raw materials. The candle base materials should preferably have physical characteristics, e.g., in terms of melting point, hardness and/or malleability, that permit the material to be readily formed into candles having a pleasing appearance and/or feel to the touch, as well as having desirable olfactory properties.
In the past, attempts to formulate candle waxes from vegetable oil-based materials have often suffered from a variety of problems. For example, relative to paraffin-based candles, vegetable oil-based candles have been reported to exhibit one or more disadvantages such as cracking, air pocket formation, product shrinkage and a natural product odor associated with soybean materials. Various soybean-based waxes have also been reported to suffer performance problems relating to optimum flame size, effective wax and wick performance matching for an even burn, maximum burning time, product color integration and/or product shelf life. In order to achieve the aesthetic and functional product surface and quality sought by consumers of candles, it would be advantageous to develop new vegetable oil-based waxes that overcome as many of these deficiencies as possible.
SUMMARY
The present invention relates to candles having low paraffin content and methods of producing such candles. The candles are typically formed from vegetable oil-based material, a biodegradable material produced from renewable resources. Since the candles are formed from a material with a low paraffin content and preferably are substantially devoid of paraffin, the candles are generally clean burning, emitting very little soot. The combination of low soot emission, biodegradability and production from renewable raw material makes the present candle a particularly environmentally friendly product.
The present wax is particularly good for use in forming pillar, votive and taper candles. The wax is desirably formulated to inhibit surface adhesion to facilitate pillar and votive mold release. Good mold release is an important economic consideration in the manufacture of candles, allowing a more rapid turnaround time on production. In addition, it is desirable that the wax is capable of being blended with natural color additives to provide an even solid color distribution.
In applications which require a harder material, such as pillar or taper candles, fatty acid substances (e.g., palmitic and/or stearic acid) can be blended with an hydrogenated oil. In general, the higher the ratio of the hydrogenated oil to the fatty acid, the softer the product. A higher percentage of fatty acid generally produces a harder product. However, too high a level of a fatty acid, such as palmitic acid, can lead to cracking or breaking.
The vegetable oil-based materials which may be used to form the present candles are typically solid, firm but not brittle, generally somewhat malleable, with no free oil visible. Such materials commonly are predominantly made up of a mixture of a triacylglycerol component and a fatty acid component. The fatty acid component is often derived from saponification of a vegetable-oil based material and commonly includes a mixture of two or more fatty acids. For example, the fatty acid component may suitably include palmitic acid and/or stearic acid, e.g., where at least about 90 wt. % of the fatty acid which makes up the fatty acid component is palmitic acid, stearic acid or a mixture thereof.
The triacylglycerol component may suitably be chosen to have a melting point of about 57° C. to 63° C. (135° F. to 145° F.). One embodiment of such a triacylglycerol stock can be formed by blending fully hydrogenated and partially hydrogenated vegetable oils to produce a blend with an Iodine Value of about 35-45 and the desired melting point. For example, a triacylglycerol stock can be formed by blending appropriate amounts of fully hydrogenated soybean and palm oils with a partially hydrogenated soybean oil having an Iodine Value of about 60 to 75. As used herein, a fully hydrogenated vegetable oil refers to a vegetable oil which has been hydrogenated to an Iodine Value of no more than about 5. Instead of employing a highly hydrogenated vegetable oil, triacylglycerol material derived from precipitating a hard fat fraction from a vegetable oil may be employed. Hard fat fractions obtained in this manner are predominantly composed of saturated triacylglycerols.
Candles may be made from pure vegetable oil-based wax or may include minor amounts of other additives to modify the properties of the waxy material. Examples of types of additives which may commonly be incorporated into the present candles include colorants, fragrances (e.g., fragrance oils), insect repellants, and the like.
If the present wax is used to produce a candle, the same standard wicks that are employed with other waxes (e.g., paraffin and/or beeswax) can be utilized. In order to fully benefit from the environmentally-safe aspect of the present wax, it is desirable to use a wick which does not have a metal core, such as a lead or zinc core. One example of a suitable wick material is a braided cotton wick.
DETAILED DESCRIPTION
The physical properties of a triacylglycerol are primarily determined by (i) the chain length of the fatty acyl chains, (ii) the amount and type (cis or trans) of unsaturation present in the fatty acyl chains, and (iii) the distribution of the different fatty acyl chains among the triacylglycerols that make up the fat or oil. Those fats with a high proportion of saturated fatty acids are typically solids at room temperature while triacylglycerols in which unsaturated fatty acyl chains predominate tend to be liquid. Thus, hydrogenation of a triacylglycerol stock (“TAGS”) tends to reduce the degree of unsaturation and increase the solid fat content and can be used to convert a liquid oil into a semisolid or solid fat. Hydrogenation, if incomplete, also tends to result in the isomerization of some of the double bonds in the fatty acyl chains from a cis to a trans configuration. By altering the distribution of fatty acyl chains in the triacylglycerol moieties of a fat or oil, e.g., by blending together materials with different fatty acid profiles, changes in the melting, crystallization and fluidity characteristics of a triacylglycerol stock can be achieved.
Herein, when reference is made to the term “triacylglycerol-based material” the intent is to refer to a material made up predominantly of triacylg

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Vegetable oil based wax compositions does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Vegetable oil based wax compositions, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Vegetable oil based wax compositions will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3335853

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.