VCSEL with heat-spreading layer

Coherent light generators – Particular active media – Semiconductor

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C372S046012, C372S043010

Reexamination Certificate

active

06782019

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates generally to surface-emitting lasers and, in particular, to removal of heat generated in the active region of vertical-cavity surface-emitting lasers (VCSELs).
2. Description of the Related Art
The following descriptions and examples are not admitted to be prior art by virtue of their inclusion within this section.
Lasers have a wide range of industrial and scientific uses. There are several types of lasers, including gas lasers, solid-state lasers, liquid (dye) lasers, and free electron lasers. Semiconductor lasers are also in use. The possibility of amplification of electromagnetic waves in a semiconductor superlattice structure, i.e., the possibility of semiconductor diode lasers, was predicted in a seminal paper by R. F. Kazarinov, et al., “Possibility of the Amplification of Electromagnetic Waves in a Semiconductor with a Superlattice,”
Soviet Physics Semiconductors
, vol. 5, No. 4, pp. 707-709 (October 1971). Semiconductor laser technology has continued to develop since this discovery.
There are a variety of types of semiconductor lasers. Semiconductor lasers may be diode lasers (bipolar) or non-diode lasers such as quantum cascade (QC) lasers (unipolar). Semiconductor lasers of various types may be electrically pumped (EP) (by a DC or alternating current), or pumped in other ways, such as by optically pumping (OP) or electron beam pumping. Semiconductor lasers are used for a variety of applications and can be built with different structures and semiconductor materials, such as gallium arsenide (GaAs).
Semiconductor lasers are typically powered by applying an electrical potential difference across the active region, which causes a current to flow therein. Electrons in the active region attain high energy states as a result of the potential applied. When the electrons spontaneously drop in energy state, photons are produced (to carry away the energy lost by the transition, so as to conserve energy). Some of those photons travel in a direction perpendicular to the reflectors of the laser. As a result of the ensuing reflections, the photons can travel through the active region multiple times.
Stimulated emission occurs when an electron is in a higher energy level and a photon with an energy equal to the difference between the electron's energy and a lower energy interacts with the electron. In this case, the photon stimulates the electron to fall into the lower energy state, thereby emitting a photon. The emitted photon will have the same energy as the original photon, and, if viewed as waves, there will be two waves emitted (from the electron's atom) in phase with the same frequency. Thus, when the photons produced by spontaneous electron transition photons interact with other high energy state electrons, stimulated emission can occur so that two photons with identical characteristics are present. If most electrons encountered by the photons are in the high energy state, the number of photons traveling between the reflectors tends to increase, giving rise to amplification of light and thus lasing.
The use of semiconductor diode lasers for forming a source of optical energy is attractive for a number of reasons. For example, diode lasers have a relatively small volume and consume a small amount of power as compared to conventional laser devices. Further, the diode laser is a monolithic device, and does not require a combination of a resonant cavity with external mirrors and other structures to generate a coherent output laser beam.
Additionally, semiconductor lasers may be edge-emitting lasers or surface-emitting lasers (SELs). Edge-emitting semiconductor lasers output their radiation parallel to the wafer surface, while in SELs, the radiation output is perpendicular to the wafer surface. One type of SEL is the vertical-cavity surface-emitting laser (VCSEL).
The VCSEL structure usually consists of an active (optical gain) region sandwiched between two mirrors, such as distributed Bragg reflector (DBR) mirrors: a top, exit DBR, and a bottom DBR. DBRs are sometimes referred to as mirror stacks. DBRs or mirror stacks in VCSELs are typically formed of multiple pairs of layers referred to as mirror pairs. The pairs of layers are formed of a material system generally consisting of two materials having different indices of refraction and being easily lattice matched to the other portions of the VCSEL. The number of mirror pairs per stack may range from 20-40 pairs to achieve a high percentage of reflectivity, depending on the difference between the refractive indices of the layers. A larger number of mirror pairs increases the percentage of reflected light (reflectivity). The DBR mirrors of a typical VCSEL can be constructed from dielectric or semiconductor layers (or a combination of both, including metal mirror sections). The difference between the refractive indices of the layers of the mirror pairs can be higher in dielectric DBRs, generally imparting higher reflectivity to dielectric DBRs than to semiconductor DBRs for the same number of mirror pairs and overall thickness. Conversely, in a dielectric DBR, a smaller number of mirror pairs can achieve the same reflectivity as a larger number in a semiconductor DBR. However, it is sometimes necessary or desirable to use semiconductor DBRs, despite their lower reflectivity/greater thickness, to conduct current, for example (e.g., in an EP VCSEL). Semiconductor DBRs also have higher thermal (heat) conductivity than do dielectric DBRs, making them more desirable for heat-removal purposes, ceteris paribus.
When properly designed, these mirror pairs will cause a desired reflectivity at the laser wavelength. Typically in a VCSEL, the mirrors are designed so that the bottom DBR mirror (i.e. the one interposed between the substrate material and the active region) has nearly 100% reflectivity, while the top DBR mirror has a reflectivity that may be 98%-99.5% (depending on the details of the laser design). Of course, various laser structures may vary from these general properties.
VCSELs have many attractive features such as low threshold current, single longitudinal mode, and a circular output beam, among others. Additionally, because the output is perpendicular to the wafer surface, it is possible to test fabricated VCSELs on the wafer before extensive packaging is done, in contrast to edge-emitting lasers, which must be cut from the wafer and packaged to an extent necessary to test the laser.
Referring now to
FIG. 1
, there is shown a cross-sectional view of the layer structure of a VCSEL array
100
, to illustrate heat removal from the active region of a VCSEL
110
of the array
100
(not to scale). VCSEL
110
comprises a bottom DBR
113
(part of layer
103
), an active region section
114
(part of active region layer
104
), and a top DBR
115
(which may also be part of a top DBR layer (not shown)). These parts of VCSEL
110
are disposed on substrate layer
102
, which is mounted on submount
101
. Active region
114
is pumped with some form of pumping energy (e.g., light from pump laser
118
) and coherent light
119
is emitted vertically out of the top DBR
115
.
During operation, the active region of the VCSEL generates heat, whether it is electrically pumped (EP) or optically pumped (OP). Heat is generated in active region
114
, e.g., due to the pumping energy applied thereto, and also because the active region is not 100% efficient in converting the pumping energy to output light. For example, when electrons fall into a lower energy state without emitting a photon, heat is generated.
It is important to maintain the active region at or below a specified threshold temperature, and/or to maintain the active region at as low a temperature as possible. One reason for this is to prevent damage to the VCSEL
110
. Another reason is that, generally, a semiconductor laser operates with higher gain—and thus more efficiently—at lower temperatures. Thus, for example, at a lower active region temperature, a higher pumping energy may be applied

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

VCSEL with heat-spreading layer does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with VCSEL with heat-spreading layer, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and VCSEL with heat-spreading layer will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3353357

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.