Drug – bio-affecting and body treating compositions – Antigen – epitope – or other immunospecific immunoeffector – Hormone or other secreted growth regulatory factor,...
Reexamination Certificate
2000-03-24
2004-11-16
Eyler, Yvonne (Department: 1646)
Drug, bio-affecting and body treating compositions
Antigen, epitope, or other immunospecific immunoeffector
Hormone or other secreted growth regulatory factor,...
C514S002600, C514S012200, C530S350000, C530S351000, C530S399000
Reexamination Certificate
active
06818220
ABSTRACT:
FIELD OF THE INVENTION
The present invention generally relates to the field of genetic engineering and more particularly to growth factors for endothelial cells and growth factor genes.
BACKGROUND OF THE INVENTION
Developmental growth, the remodeling and regeneration of adult tissues, as well as solid tumor growth, can only occur when accompanied by blood vessel formation. Angioblasts and hematopoictic precursor cells differentiate from the mesoderm and form the blood islands of the yolk sac and the primary vascular system of the embryo. The development of blood vessels from these early (in situ) differentiating endothelial cells is termed vasculogenesis. Major embryonic blood vessels are believed to arise via vasculogenesis, whereas the formation of the rest of the vascular tree is thought to occur as a result of vascular sprouting from pre-existing vessels, a process called angiogenesis. Risau et al.,
Devel. Biol
., 25:441-450 (1988).
Endothelial cells give rise to several types of functionally and morphologically distinct vessels. When organs differentiate and begin to perform their specific functions, the phenotypic heterogeneity of endothelial cells increases. Upon angiogenic stimulation, endothelial cells may re-enter the cell cycle, migrate, withdraw from the cell cycle and subsequently differentiate again to form new vessels that are functionally adapted to their tissue environment. Endothelial cells undergoing angiogenesis degrade the underlying, basement membrane and migrate, forming capillary sprouts that project into the perivascular stroma. Ausprunk et al.,
Microvase Rev
. 14:51-65 (1977). Angiogenesis during tissue development and regeneration depends on the tightly controlled processes of endothelial cell proliferation, migration, differentiation, and survival. Dysfunction of the endothelial cell regulatory system is a key feature of many diseases. Most significantly, tumor growth and metastasis have been shown to he angiogenesis dependent. Folkman et al.,
J. Biol. Chem
., 267:10931-10934 (1992).
Key signals regulating cell growth and differentiation are mediated by polypeptide growth factors and their transmembrane receptors, many of which arc tyrosine kinase. Autophosphorylated peptides within the tyrosine kinase insert and carboxyl-terminal sequences of activated receptors are commonly recognized by kinase substrates involved in signal transduction for the readjustment of gene expression in responding cells. Several families of receptor tyrosine kinases have been characterized. Van der Geer et al.,
Ann. Rev. Cell Biol
., 10:251-337 (1994). The major growth factors and receptors transducing angiogenic stimuli are schematically shown in
FIG. 1
Fibroblast growth factors are also known to be involved in the regulation of angiogenesis. They have bean shown to be mitogenic and chemotactic for cultured endothelial cells. Fibroblast growth factors also stimulate the production of proteases, such as collagenases and plasminogen activators, and induce tube formation by endothelial cells. Saksela et al.,
Ann. Rev. Cell Biol
., 4:93-126 (1988). There are two general classes of fibroblast growth factors. FGF-1 and FGF-2, both of which lack conventional signal peptides. Both types have an affinity for heparin, and FGF-2 is bound to heparin sulfate proteoglycans in the subendothelial extracellular matrix from which it may be released after injury. Heparin potentiates the stimulation of endothelial cell proliferation by angiogenic FGFs, both by protecting against denaturation and degradation and dimerizing the FGFs. Cultured endothelial cells express the FGF-1 receptor but no significant levels of other high-affinity fibroblast growth factor receptors.
Among other ligands for receptor tyrosine kinases, the platelet derived growth factor, PDGF-BB, has been shown to be weakly angiogenic in the chick chorioallantoic membrane. Risau et al.,
Growth Factors
. 7:261-266 (1992). Transforming growth factor &agr; (TGF&agr;) is an angiogenic factor secreted by several tumor cell types and by maicrophages. Hepatocyte growth factor (HGF), the ligand of the c-met proto-oncogene-encoded receptor, also is strongly angiogenic.
Recent evidence shows that there are endothelial cell specific growth factors and receptors that may be primarily responsible for the stimulation of endothelial cell growth, differentiation and certain differentiated functions. The best studied of these is vascular endothelial growth factor (VEGF), a member of the PDGF family. Vascular endothelial growth factor is a dimeric glycoprotein of disulfide-linked 23 kD subunits. Other reported effects of VEGF include the mobilization of intracellular calcium, the induction of plasminogen activator and plasminogen activator inhibitor-1 synthesis, stimulation of hexose transport in endothelial cells, and promotion of monocyte migration in vitro. Four VEGF isoforms, encoded by distinct mRNA splice variants, appear to be equally capable of stimulating mitogenesis in endothelial cells. However, each isoform has a different affinity for cell surface proteoglycans, which behave as low affinity receptors for VEGF. The 121 and 165 amino acid isoforms of VEGF (VEGF121 and VEGF165) are secreted in a soluble form, whereas the isoforms of 189 and 206 amino acid residues remain cell surface-associated and have a strong affinity for heparin. VEGF was originally purified from several sources on the basis of its mitogenic activity toward endothelial cells, and also by its ability to induce microvascular permeability, hence it is also called vascular permeability factor (VPF).
Two high affinity receptors for VEGF have been characterized: VEGFR-1 Flt-1 (fms-like tyrosine kinase-1) and VFGFR-2/KDR/Flk-1 (kinase insert domain containing receptor/fetal liver kinase-1). Those receptors are classified in the PDGF-receptor family, but they have seven rather than five immunoglobulin-like loops in their extracellular domain (see FIG.
1
), and they possess a longer kinase insert than normally observed in this family. The expression of VEGF receptors occurs mainly in vascular endothelial cells, although some may be present on hematopoictic progenitor cells, monocytes, and melanoma cells. Only endothelial cells have been reported to proliferate in response to VEGF, and endothelial cells from different sources show different responses. Thus, the signals mediated through VEGFR-1 and VEGFR-2 appear to be cell type specific. The VEGF-related placenta growth factor (PlGF) was recently shown to bind to VEGFR-1 with high affinity. PlGF was able to enhance the growth factor activity of VEGF, but it did not stimulate endothelial cells on its own. Naturally occurring VEGF/PlGF heterodimers were nearly as potent mitogens as VEGF homodimers for endothelial cells. Cao et al.,
J. Biol. Chem
., 271:3154-62 (1996).
The Flt4 receptor tyrosine kinase (VEGFR-3) is closely related in structure to the products of the VEGFR-1 and VEGFR-2 genes. Despite this similarity, the mature form of Flt4 differs from the VEGF receptors in that it is proteolytically cleaved in the extracellular domain into two disulfide-linked polypeptides. Pajusola et al.,
Cancer Res
. 52:5738-5743 (1992). The 4.5 and 5.8 kb Flt4 mRNAs encode polypeptides which differ in their C-termini due to the use of alternative 3′ exons. Isoforms of VEGF or PlGF do not show high affinity binding to Flt4 or induce its autophosphorylation.
Expression of Flt4 appears to be more restricted than the expression of VEGFR-1 or VEGFR-2. The expression of Flt4 first becomes detectable by in situ hybridization in the angioblasts of head mesenchyme, the cardinal vein, and extraembryonically in the allantois of 8.5 day p.c. mouse embryos. In 12.5 day p.c. embryos, the Flt4 signal is obsessed in developing venous and presumptive lymphatic endothelia, but arterial endothelia appear negative. During later stages of development, Flt4 mRNA becomes restricted to developing lymphatic vessels. The lymphatic endothelia and some high endothelial venules express Flt4 mRNA in adult human tissues and increased expression occu
Alitalo Kari
Joukov Vladimir
Eyler Yvonne
Licentia Ltd.
Marshall & Gerstein & Borun LLP
O'Hara Eileen B.
LandOfFree
Vascular endothelial growth factor C (VEGF-C) protein and... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Vascular endothelial growth factor C (VEGF-C) protein and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Vascular endothelial growth factor C (VEGF-C) protein and... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3338391