Vascular access device

Surgery – Means for introducing or removing material from body for... – Treating material introduced into or removed from body...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C604S891100, C604S019000

Reexamination Certificate

active

06258058

ABSTRACT:

TECHNICAL FIELD AND
BACKGROUND OF THE INVENTION
This invention relates to vascular access systems implanted in individuals for the infusion of medication and the like, and particularly to vascular access systems which permit repeated introduction of medication into the device with minimal tissue damage to the individual.
In the treatment of many illnesses, it is necessary to repeatedly infuse medication directly into the bloodstream, into a particular organ, or otherwise to a particular medication site. For example, various chemotherapy regimes for treatment of cancerous conditions require frequent periodic medication. Bowel diseases and bone infections are other examples of conditions which require repeated treatment, as does the periodic dispensing of pain medication for terminally ill patients. In such frequent medication situations, to avoid having to locate a blood vessel for injection by needle each time, it is preferred to implant a catheter into the circulatory system through which the medication can be infused. Likewise, catheters are implanted to dispense medication directly to diseased or other treatment sites. Often, the medication is toxic in concentrated amounts and, therefore, must be infused through a catheter into a large volume of blood. To accomplish this, the catheter is fed through a vessel to a large vein or a chamber of the heart.
A problem that arises with some implanted vascular access systems is that, despite steps taken after they are used to keep them clean, the catheter may become infected. Given sufficient time, any catheter system which leaves the access opening external of the body will necessarily develop infection at the site where the catheter passes through the skin. While fully implanting a catheter device may reduce the problem of infection, other devices which are fully implanted require more invasive surgery, resulting in more discomfort, greater expense, and a longer recovery period. Moreover, these invasive techniques tend to form unsightly scars and scar tissue.
Various removable devices have been developed to administer medications to the large veins in the body or to a chamber in the heart, including external extending catheters, such as those referred to as BROVIAC, GROSHONG, and HICKMAN catheters. While there are differences between these external extending catheters, in the medical trade these various catheters are generally collectively referred to as BROVIAC-type catheters, or “BROVIACS.” Another general type of system which is wholly implanted is generally referred to as a vascular port, such as, for example, PORT-A-CATH®, available from Pharmacia Deltec, Inc., in St. Paul, Minn., or as disclosed in U.S. Pat. No. 5,281,205 to McPherson, or VITAL-PORT® available from Cook Inc. in Bloomington, Ind.
The externally extending catheters are implanted using a guide wire, which is inserted into the body and directed to the point of application through the cannula of a large needle. Once the guide wire is in place in the body, a sheath is fitted on a dilator and guided down the guide wire by the dilator. When the dilator is withdrawn, the sheath forms a tunnel through the body to the point of application. The distal end of the catheter is then directed to the point of application through the sheath, leaving the proximate end of the catheter extending from the body. The sheath is formed from peel away sections, which are separated to remove the sheath and leave the catheter extending into the body to the selected treatment site.
Another prior art technique is referred to as a direct cutdown technique, in which an incision is made over the vein and the catheter is then inserted directly into the vein without use of a guide wire. The tunnel may be formed using a second cutdown or skin incision and a sharp tipped hollow metal trocar tunneling device.
An advantage of the externally extending catheters is that they can be inserted under light anesthesia on an outpatient basis. Furthermore, they tend to require less invasive procedures, requiring only a small incision in the skin. Moreover, the procedure is relatively quick. An external extending catheter can be implanted or removed in a matter of fifteen minutes or thereabouts. Moreover, the externally extending catheter can be used for numerous applications, such as chemotherapy, treatment of bowel disease, blood product infusions, bone infection, and can be used to administer pain medicines for terminally ill or seriously injured persons. However, the disadvantages of the externally extending catheter include a significant likelihood of infection at the point of exit from the body, an unsightly and somewhat intimidating medical device protruding from the body, and a restriction on the patient's activities. The patient cannot swim or engage in numerous other activities that would expose the catheter exit site to an even greater risk of infection.
Vascular ports eliminate some of the disadvantages of the externally extending catheters. Vascular ports are implanted beneath the skin and, therefore, eliminate some of the risk of infection. Furthermore, the patient is generally able to engage in most activities, including swimming. However, vascular access ports require a more invasive surgical procedure in order to implant or remove the port in or from the body. Conventional vascular ports require that a large incision be made in the skin and a cavity physically excavated below the skin to receive the port device. Moreover, the port is typically sutured to the muscle fascia. Once the port is in place and the delivery tubing is inserted and directed to the site of application, the incision is closed, leaving a relatively large scar site and protrusion of the skin at the port location. The medication is delivered to the port transdermally by a needle, which is pushed through the skin and into the chamber of the port through a membrane of material such as silicone. The disadvantage of the port is that it requires an invasive and more time consuming surgical procedure. Therefore, the procedure is, in general, significantly more expensive than the implanting of conventional externally extending catheters. Furthermore, when the port gets infected, the infection tends to be a large infection and requires similarly invasive procedures for removal of the vascular port.
SUMMARY OF THE INVENTION
Accordingly, the present invention provides a new and unique vascular access device, as well as method and apparatus for implanting and removing the vascular access device, which provides a venous and arterial implantable access system designed to permit repeated access to the vascular system for the parenteral delivery of medications, nutritional solutions, and other fluids to selected sites within the vascular system and for sampling of venous blood.
According to one aspect of the invention, a vascular access device includes an elongated implant body having at least one access chamber for receiving medical treatment. A first opening is provided in a first end of the elongated implant body in communication with the access chamber. A second access opening is provided in a wall of the elongated implant body, also in communication with the access chamber. A tubular member is connected to the first end of the elongated body and has at least one passageway that is in communication through the first opening with the access chamber for delivering medical treatment from the access chamber to a preselected treatment site in the body of a patient. A membrane is provided which covers the second access opening and is adapted to receive a percutaneous needle puncture without leakage from the puncture.
In one aspect, the leading first end of the elongated implant body is generally pointed in order to ease insertion of the vascular access device into an opening in the body of the patient. In another aspect, the opposite second end of the vascular access device body is generally pointed to ease removal of the elongated implant body from the patient. In further aspects, the second end of the elongated implant body includes

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Vascular access device does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Vascular access device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Vascular access device will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2481077

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.