Variable stride elliptical exercise apparatus

Exercise devices – Involving user translation or physical simulation thereof – Stair climbing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C482S057000, C482S051000

Reexamination Certificate

active

06361476

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field
The present invention relates to a standup exercise apparatus that simulates walking and jogging with arm exercise. More particularly, the present invention relates to an exercise machine having separately supported pedals for the feet and arm exercise coordinated with the motion of the feet. The pedal stroke can be changed during operation of the exercise apparatus.
2. State of the Art
The benefits of regular exercise to improve overall health, appearance and longevity are well documented in the literature. For exercise enthusiasts the search continues for safe apparatus that provides full body exercise for maximum benefit in minimum time.
Recently, a new category of exercise equipment has appeared on the commercial market called elliptical cross trainers. These cross trainers guide the feet along a generally elliptical shaped curve to simulate the motions of jogging and climbing. Generally they are large exercise machines using long cranks to generate a long foot stride. There is a need for a compact elliptical exercise machine capable of a similar long stride using a significantly shorter crank. Further, there is a need to adjust the length of the elliptical stride to accommodate users having different leg lengths.
Numerous combinations of levers and cranks to combine exercise for arms and feet can be found. Hex in U.S. Pat. No. 4,645,200 combines arm and foot levers for sit down exercise while Bull et al. in U.S. Pat. No. 4,940,233 combines arm and foot levers for standup exercise.
Lucas et al. in U.S. Pat. No. 4,880,225 offer oscillating arm levers coupled to the foot crank by a connecting rod. Dalebout et al. in U.S. Pat. Nos. 4,971,316 and 5,000,444 also shows oscillating swing arms coupled to the foot crank by an offset second crank and connecting rod. Lom in U.S. Pat. No. 4,986,533 offers oscillating arms driven by a crank-slider coupled to a foot crank.
Recently, there has been an effort to improve the up and down motion of stair climbers by the addition of horizontal movements. Habing in U.S. Pat. Nos. 5,299,993 and 5,499,956 offers an articulated linkage controlled through cables by motor to move pedals through an ovate path. Both pedal pivots follow basically the same guidance path curve directed by a motor controller. Stearns in U.S. Pat. No. 5,299,993 shows a stair stepping exercise machine which incorporates horizontal movement using a combination of vertical parallelogram linkage and horizontal parallelogram linkage to guide the foot pedals. The parallelogram linkages serve to maintain the pedal at a constant angle relative to the floor during a pedal cycle. The pedal pivots move through similar undefined guide paths.
Standup cycling is described in various patents such as U.S. Pat. No. 3,563,541 (Sanquist) which uses weighted free pedals as load resistance and side to side twisting motion. Also U.S. Pat. Nos. 4,519,603 and 4,477,072 by DeCloux describe standup cycling with free pedals in a lift mode to simulate body lifting.
Standup pedal exercise is shown in U.S. Pat. No. 4,643,419 (Hyde) and by Jarriel et al. in U.S. Pat. No. D330,236 where pedal platforms move by dual crank motion but remain parallel to the floor. Knudsen in U.S., Pat. No. 5,433,680 shows an elliptical path generating mechanism with pedals having only one pivot allowing the pedal to rotate unconstrained about the pivot as in a bicycle crank.
Standup pedal exercise combined with arm levers attached to the pedals is shown in Kummerlin et al. German Pat. No. 2,919,494 and in Geschwender U.S. Pat. No. 4,786,050. Standup pedal exercise coupled with oscillating swing arms is shown in Miller U.S. Pat. Nos. 5,242,343 and 5,383,829 and in Eschenbach U.S. Pat. No. 5,423,729. All of these exercise machines use pedals having two pedal pivots which are guided by a first circular guide path curve generated by a crank which rotates through one full revolution during a pedal cycle and a second arc guide path curve generated by a rocker link or track.
Recently, numerous elliptical exercise machines have appeared in the patent literature. Rogers, Jr. in U.S. Pat. Nos. 5,527,246, 5,529,555, 5,540,637, 5,549,526, 5,573,480, 5,591,107, 5,593,371, 5,593,372, 5,595,553, 5,611,757, 5,637,058, 5,653,662 and 5,743,834 shows elliptical pedal motion by virtue of various reciprocating members and geared linkage systems. Miller in U.S. Pat. Nos. 5,518,473, 5,562,574, 5,611,756, 5,518,473, 5,562,574, 5,577,985, 5,755,642 and 5,788,609 also shows elliptical pedal motion using reciprocating members and various linkage mechanisms along with oscillating guide links with control links to determine pedal angles. Ryan et al. in U.S. Pat. No. 5,899,833 shows an elliptical cross trainer having a forward crank being driven by a pedal linkage underneath the operator.
Chang in U.S. Pat. No. 5,803,872 and Yu et al. in U.S. Pat. No. 5,800,315 show a pedal supported by a rocker link and driven with a pair of links located under the pedal pivotally connected to a crank. Maresh et al. in U.S., Pat. No. 5,792,026 show a foot support member supported by a rocker link and driven by a double crank mechanism. Lee in U.S. Pat. No. 5,779,598 shows a pedal link driven by two separate cranks.
Lee in U.S. Pat. No. 5,746,683 shows a foot support member supported on one end with a compound rocker wherein a slider and handle lever support the rocker. Kuo in U.S. Pat. No. 5,836,854 offers a linear foot support member connected on one end to a crank and guided along an arcuate curve under the pedal by a linkage on the other end. Wang et al. U.S. Pat. No. 5,830,112 shows a foot support member sliding on a pivot on one end and attached to a crank on the other that can fold.
Chen U.S. Pat. Nos. 5,779,599 and 5,762,588 shows an elliptical pedal movement with a roller interface between the foot support member and crank but does not anticipate changing the pedal stroke length during operation. Chen in U.S. Pat. No. 5,759,136 shows a foot support member with a moving pedal for adjustable elliptical motion wherein a link from the pedal to the crank can be repositioned while not in operation to change the pedal stroke length. Stearns et al. in U.S. Pat. No. 6,027,430 also shows manual adjustment for elliptical pedal motion.
Maresh in U.S. Pat. No. 5,895,339 offers an elliptical foot motion that can be changed by tilting the crank assembly forward or rearward by actuator. Stearns et al. in U.S. Pat. No. 5,919,118 show two actuators that change the proportions of a drive linkage to change the foot path of an elliptical exerciser. Maresh et al. in U.S. Pat. Nos. 5,893,820 and 5,997,445 show several adjustment devices that will change the foot motion of elliptical trainers.
Stearns et al. in U.S. Pat. No. 6,027,431 and Rodgers U.S. Pat. No. 5,743,834 show gear and screw mechanisms to change the length of a rotary crank during operation which drives a linkage to generate elliptical pedal motion. A longer crank length will produce a longer pedal stroke but also causes an undesirable higher pedal lift. Eschenbach U.S. Pat. Nos. 5,788,610 and 6,042,512 shows a linkage mechanism to generate an elliptical pedal path wherein the orientation of the elliptical pedal curve can be changed during operation. Eschenbach in U.S. Pat. No. 5,993,359 offers a variable stroke elliptical exercise apparatus wherein a control linkage adjusts the stride of the foot path by actuator.
There is a need for a pedal operated exercise machine that can be safely operated in the standup position whereby the arms and legs can be exercised with the feet moving through a generally elliptical path wherein the operator can select different pedal stride lengths and arm exercise during operation of the exercise apparatus without complicated gear mechanism.
It is one objective of this invention to provide a variable stride elliptical pedal movement wherein the pedal stroke length can be changed during operation while the pedal lift remains generally the same. Another object of this invention is to provide arm exercise that changes to accommodate taller or shorter us

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Variable stride elliptical exercise apparatus does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Variable stride elliptical exercise apparatus, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Variable stride elliptical exercise apparatus will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2868658

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.