Variable resistance device for a high pressure air supply...

Pipes and tubular conduits – With flow regulators and/or baffles – Restrictors

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C138S037000

Reexamination Certificate

active

06273141

ABSTRACT:

FIELD AND BACKGROUND OF THE INVENTION
The present invention relates generally to high-pressure, air supply systems such as those used in connection with fluidized bed boilers and, more particularly, to a variable resistance device for use in such systems for controlling the air flow therethrough at desired pressures.
Air supply systems employ an arrangement of ductwork and one or more fans to provide air at a desired delivery pressure and flow rate. In many cases, the fan installed in the air supply system has a larger flow rate capacity and/or delivery pressure than initially required so that it can accommodate a future operating condition. One such example would be a situation where a fan used to supply air for a boiler is sized for a higher boiler load condition, but the fan will be operated at a lower boiler load condition in the interim. In such situations, the fan must be stabilized so that it can operate at the reduced system load operating point corresponding to the reduced boiler load condition. This is usually accomplished by adding air resistance or pressure drop into the system, in lieu of making expensive fan modifications or replacing the fan itself. The most cost effective and common way to add such air resistance or pressure drop to an air supply system is to install a stationary perforated plate or a standard flow damper in the ductwork.
A situation arose in connection with a fluidized bed boiler system where additional resistance was needed to stabilize an oversized forced draft fan used to fluidize the bed. The forced draft fans used in such service are high static pressure fans (producing near 70 inches water column) and are designed to supply air to the bottom of the fluidized bed boiler. The high static pressure is required because these fans are responsible for the fluidization of the bed material. The other distinct aspect of this application is that this fan is required to change airflow as needed to match the boiler load while still maintaining sufficient static pressure to fluidize the bed material. As it turned out, the actual operating condition required less static pressure than had been estimated, and caused the fan to operate below its design static pressure curve in an unstable manner. The fan instability caused a surging effect at the fan that resulted in a combustion pulse in the boiler. This combustion pulse was, in turn, amplified in strength more than ten times. This amplification was believed to be caused by the fluidized bed boiler geometry. On site testing confirmed that adding resistance to the air system stabilized the fan. Through this testing both a high and low airflow resistance parameter was developed. These resistance parameters were unique in that the high airflow condition required less resistance than the low flow condition.
Both stationary perforated plate and conventional flow damper schemes were explored and found inadequate for this application. The stationary perforated plate could not provide the desired resistance at both high and low airflows. The conventional flow damper was not able to offer stable operation at the low airflow condition. In fact, due to the inherent characteristics of a flow control device operated at more than 50% closed, it was very likely that a conventional flow damper could itself create a pressure fluctuation at the low airflow condition. What was needed was a device that could vary the resistance with airflow demands and provide stable operation at all airflow conditions. The present invention provides a solution to this unique problem.
SUMMARY OF THE INVENTION
The present invention solves the problem described above by providing a variable resistance device which can provide a desired resistance at a specific airflow rate. In its simplest form, the present invention is a variable resistance device which comprises a rotatable apertured or perforated plate which can be installed in a duct structure and rotated to various angular positions to give the required resistance at a specific flow. The device according to the invention is designed with specific operating parameters in mind. In particular, the device is designed to provide the maximum resistance value at the minimum flow in the closed position, the minimum resistance value at the maximum flow in the 70% open position, and most importantly, provides a nearly linear relationship between perforated plate angular opening position and resistance.
For the particular fluidized bed application described above, the variable resistance device was round to easily fit into the round ducts used in the fluidized bed air supply system but it will be appreciated by those skilled in the art that other cross-sections will work just as well. For example, the concept of the present invention will work equally well with a rectangular shaped, rotatable plate in a rectangular air duct. Similarly, the concept of the present invention is not limited to air service in fluidized bed boilers, and it can be applied to any air, flue gas or other gaseous conveying application requiring the introduction of variable resistance into the system conveying such fluids.
Accordingly, one aspect of the present invention is drawn to a variable resistance device for a high-pressure air system that is easily sealed within a duct of the system.
Another aspect of the present invention is drawn to a variable resistance device that provides a substantially linear relationship between plate position and resistance.
The various features of novelty which characterize the invention are pointed out with particularity in the claims annexed to and forming a part of this disclosure. For a better understanding of the invention, its operating advantages and specific benefits attained by its uses, reference is made to the accompanying drawings and descriptive matter in which a preferred embodiment of the invention is illustrated.


REFERENCES:
patent: 4487510 (1984-12-01), Burrman et al.
patent: 4506991 (1985-03-01), Hudson
patent: 4619138 (1986-10-01), Ohnhaus
patent: 5398728 (1995-03-01), Baumeister et al.
patent: 5971604 (1999-10-01), Linga et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Variable resistance device for a high pressure air supply... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Variable resistance device for a high pressure air supply..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Variable resistance device for a high pressure air supply... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2516134

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.