Variable pattern nozzle

Fluid sprinkling – spraying – and diffusing – Flow deflecting or rotation controlling means – Fluid rotation inducing means upstream of outlet

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C239S017000

Reexamination Certificate

active

06250570

ABSTRACT:

FIELD OF THE INVENTION
The present invention is directed to a water nozzle assembly for producing variable water patterns.
BACKGROUND OF THE INVENTION
There are several types of water nozzles that provide the ability to vary the pattern of the discharged water. For example, the typical fire hose nozzle provides the operator with ability to produce a discharge of water with a pattern that can be varied between a relatively thin stream of water and a wide conical spray. The operator controls the pattern by actuating a lever that, in turn, varies the position of a plug within the nozzle.
Another type of nozzle permits the pattern of the discharge pattern to be only one of either a relatively thin stream of water or a wide conical spray. The relatively thin stream of water is produced by supplying water to the first of two pairs of inlet ports to the nozzle, while not providing any water to the second pair of inlet ports. To produce the wide conical spray, water is provided to the second pair of inlet ports but not to the first pair of inlet ports.
SUMMARY OF THE INVENTION
The present invention is directed to a nozzle assembly that permits the discharge pattern of the water to be varied between a relatively thin stream of water and a wide conical spray of water without the use of any moving parts within the nozzle.
In one embodiment, the nozzle assembly includes a hollow body for carrying a first stream of water in a straight or linear direction. A tangential injector is provided for carrying a second stream of water and directing the stream such that it has a spin or rotational component. The tangential injector is operatively connected to the hollow cylindrical body so that whatever first and second streams of water are present intersect and interact with one another to produce a third stream of water. A nozzle is provided for receiving the third stream of water and directing the stream of water to an exit orifice.
In operation, the pattern of the water produced at the orifice can be varied between a thin stream and a wide conical shape by varying the water supplied to the hollow body and the tangential injector. At one extreme, if a stream of water is supplied to the hollow body but no water is provided to the tangential injector, a relatively thin stream of water exits the orifice. If, however, a stream of water is supplied to the tangential injector but no water is provided to the hollow body, a wide conical spray is produced at the orifice. By providing streams of water to both the hollow body and the tangential injector, a discharge pattern that is between the thin stream of water and the wide conical spray is produced. By varying the characteristics of the streams, the resulting discharge pattern can be varied. More specifically, increasing the pressure of the first stream being provided to the hollow body increases the vertical or longitudinal component of the resulting discharge pattern. In contrast, increasing the pressure of the second stream of water being provided to the tangential diffuser increases the breadth or radial component of the resulting conical spray pattern.
In one embodiment, the hollow body includes a flow straightening device to insure that any spin or twist in the water received by the body is removed prior to interaction with any water provided by the tangential injector assembly. This insures that any twist or spin in the water discharged from the nozzle is substantially attributable to the effect of any water being provided by the tangential injector. If no water is provided by the tangential injector, the stream of water that is discharged from the nozzle assembly has a glass-like quality. Further, in one embodiment, the discharged stream of water is both glass-like and substantially solid.
In a further embodiment, the tangential injector includes a diffuser with a plurality of holes. The holes of the diffuser receive the second stream of water and constrain the path of the second stream of water such that the exiting stream has the desired rotational characteristics. Employing more than two holes aids in the reduction of any artifact in the discharge pattern that is indicative of the use of a rotating stream of water to achieve a conical discharge pattern. Equal spacing of the holes further reduces any such artifact.
In another embodiment, the tangential injector includes a housing that defines a plenum for the second stream of water. The housing includes an inlet port for receiving the second stream of water and a tangential diffuser that directs the second stream of water to interact with the first stream of water. The plenum is of sufficient size to assure that there is substantially equal pressure at the entry to each of the holes. Substantially equal pressure improves the quality of the spin or twist produced in the third stream of water that is discharged from the nozzle.
The housing, in one embodiment, has a torus shape and an inlet port that directs the second stream of water such that the stream has a tangential component relative to radius of the torus-shaped housing. The tangential orientation of the inlet port and the torus shape of the plenum enhance the spin or rotational quality of the second stream of water and thereby substantially prevent any random turbulence in the stream of water received at the inlet port from reaching the tangential diffuser. This, in turn, facilitates the equalization of the hydraulic conditions at the entry to each of the holes in the diffuser and the quality of the resulting discharge pattern.
Another embodiment employs a nozzle that is shaped to increase the centripetal velocity of any rotational or spin component in the third stream of water. In one embodiment, a nozzle with a U-shaped longitudinal cross-section is utilized to achieve this effect.


REFERENCES:
patent: 3558053 (1971-01-01), Hruby, Jr.
patent: 3645449 (1972-02-01), Hruby, Jr.
patent: 3773258 (1973-11-01), Hruby, Jr.
patent: 3782629 (1974-01-01), Hruby, Jr.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Variable pattern nozzle does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Variable pattern nozzle, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Variable pattern nozzle will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2530175

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.