Variable modulus prosthetic hip stem

Prosthesis (i.e. – artificial body members) – parts thereof – or ai – Implantable prosthesis – Bone

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C623S023180, C623S023150

Reexamination Certificate

active

06228123

ABSTRACT:

CROSS REFERENCE TO RELATED APPLICATIONS
Not Applicable.
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH
Not Applicable.
FIELD OF THE INVENTION
The present invention relates to an improved prosthetic bone termination, such as a hip stem prosthesis and to a method of imparting desirable mechanical properties to such a stem. It also relates generally to other bone prostheses having a prothesis stem implant portion.
BACKGROUND OF THE INVENTION
A great many constructions have been proposed for the stem portion of the femoral component of a hip prosthesis. This component attaches to the proximal end of the femur, replacing the natural bone termination, and generally carries the ball of the prosthetic hip joint, which is either separately attached or integrally formed with the stem. The stem fits into the intramedullary canal of the femur, which is generally prepared by resection of the bone end, and reaming or broaching a bore to remove a portion of the central bone tissue. In addition to a number of specialized proprietary or modular constructions, these stems may have one of several overall architectures. One of these involves a completely solid stem having a shaped shoulder portion which fits very precisely into a corresponding prepared cavity that is first machined in the end of the proximal femur. Such stems are made in a discrete number of sizes, and during surgery special milling or boring tools are used to form precise cutouts in the femoral spout to accommodate the contour of the prosthesis, which is driven in to an exact fit with the bone, providing a fairly rigid and tightly fitting attachment without cement. Another form of stem is intended to be fixed primarily by setting it in bone cement. Stems of this type may have somewhat smaller dimensions and shoulder portion, allowing a space between the bone opening and the prosthesis to be filled with bone cement. Each of these constructions involves a strong metal stem, which takes over a significant share of the load carried by the femur.
It has long been known that the provision of a fairly rigid metal prosthesis can result in loss of original bone. This occurs even in the absence of disease, because the processes of bone growth and bone resorption both occur continuously. Bone growth tends to increase in response to active strain in the bone itself, whereas resorption occurs normally at a moderate level, and may increase in dependence upon a number of metabolic or hormonal factors of the individual. Since femoral stem components are generally designed to assure that during their implanted life breakage does not occur, most constructions are quite rigid, so that they carry much of the load normally borne by an intact femur. This results in stress shielding. That is, some regions of the bone experience less strain, causing certain areas of the femur to experience lesser growth, leading to a net resorption, or loss of bone mass. Since many hip stems are designed to be driven into a prepared bone canal and intimately connect to the surrounding bone, care must be taken that the prosthesis itself not assume too great a proportion of the bearing load. This problem has been addressed by designing hip stems to have a more flexible bending stiffness in their distal end. The reduction in bending stiffness is achieved, for example by employing thinner bodies or by providing slots in the stem. The latter approach also aids in initial fitting of the device.
Another commonly encountered problem is that the distal portion of the prosthesis may bear against the inner surface of the bone and cause pain. This occurs most commonly when the prosthesis fails to anchor completely to surrounding bone at the shoulder area, or when anchoring bone in the shoulder area degenerates or is resorbed, so that some wobble of the stem shaft occurs with respect to the bone. It may also occur when misalignment of the stem within the bone canal results in excessive pressure in a localized region of contact at the stem's distal end.
In addition to the foregoing effects, various individual reactions or bone conditions may result in less than optimal fixation of either type of existing stem, or may result in bone loss or bone pain after the stem has been implanted for some time. In the latter case, the condition may have causes other than the altered apportionment of load bearing between the stem and the natural bone, so that one cannot expect to eliminate such complications simply by altering the shape or stiffness of the stem/comnponent. Nonetheless, the prosthesis size, stiffness and overall shape for achieving basic mechanical properties, appear to lie at the root of several common problems.
Accordingly it would be desirable to provide a stem component of different mechanical characteristics.
SUMMARY OF THE INVENTION
This is achieved in accordance with a basic embodiment of the invention by providing a prosthetic stem for insertion into an intramedullary cavity to support an articulation component, wherein the stem includes a proximal neck portion and a distal root portion. The proximal neck is solid metal and extends for a length effective to reach into the cavity and stiffly couple to surrounding bone for load bearing engagement therewith. The distal root portion on the other hand is composed of a stranded cable which fills the bone cavity but flexes to limit transfer of bending stresses to the bone. Preferably the cable is tightly bunched at its junction with the neck, providing a degree of stiffness and columnar support at the junction region. However distally thereof, the cable is significantly more flexible. It bends to accommodate natural displacement of the surrounding bone, and it transmits a controlled or limited amount of bending stress when load is applied at the proximal end to assure that the normal bone is not bypassed for transmission of load to the distal region of the proximal femur. The prosthesis may be formed of a compatible metal such as titanium, cobalt chromium, stainless steel or the like, and it has a section modulus characterized by three distinct regions. The proximal end region presents a stiff section modulus of solid material while the distal region presents a flexible section modulus. An intermediate region of relatively short length where the cable attaches to the upper portion has a bending modulus that changes quickly from stiff to flexible. The location of this portion may be varied by changing the relative lengths of the proximal and distal portions, and to a lesser extent, by binding or fusing the cable at on or more positions to locally increase bending stiffness. In various embodiments, the cable may be entirely enclosed within a surrounding shell, or may be uncovered but have its filaments welded or otherwise fused or bonded together at one or more positions along its length. The cable may be attached to the proximal solid body portion by welding, or by crimping the solid portion around the cable. Similarly, the cable may have its distal end crimped within a surrounding ring or cup. In one embodiment, the cable is formed of parallel strands having an asymmetric cross-section, such as an ovaloid section. The strands run parallel to each other to provide a bending modulus that is stiffer in one plane than in the transverse direction. The strands of the cable may be about one to ten mils in cross-dimension.


REFERENCES:
patent: 3893196 (1975-07-01), Hochman
patent: 4221623 (1980-09-01), Heissler et al.
patent: 4266302 (1981-05-01), Tornier
patent: 4356571 (1982-11-01), Esper et al.
patent: 4446579 (1984-05-01), Inamori et al.
patent: 4532660 (1985-08-01), Field
patent: 4681590 (1987-07-01), Tansey
patent: 4683018 (1987-07-01), Sutcliffe et al.
patent: 4714467 (1987-12-01), Lechner et al.
patent: 4743263 (1988-05-01), Petrtyl et al.
patent: 4892552 (1990-01-01), Ainsworth et al.
patent: 4902297 (1990-02-01), Devanathan
patent: 4938771 (1990-07-01), Vecei et al.
patent: 4978360 (1990-12-01), Devanathan
patent: 4997444 (1991-03-01), Farling
patent: 5002579 (1991-03-01), Copf et al.
patent: 5064439 (1991-11-01), Chang

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Variable modulus prosthetic hip stem does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Variable modulus prosthetic hip stem, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Variable modulus prosthetic hip stem will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2483356

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.