Variable collection of blooming charge to extend dynamic range

Radiant energy – Photocells; circuits and apparatus – Photocell controlled circuit

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C348S308000

Reexamination Certificate

active

06307195

ABSTRACT:

FIELD OF THE INVENTION
The present invention pertains to semiconductor based image sensors and more particularly to Active Pixel image sensors (APS) or Passive Pixel image sensors (PPS) having increased dynamic range.
BACKGROUND OF THE INVENTION
APS are solid state imagers wherein each pixel contains both a photo-sensing means and at least one other active component, creating a charge that is converted to a signal (either a voltage or current signal). The signal represents the amount of light incident upon a pixel photosite. The dynamic range (DR) of an image sensing device is defined as the ratio of the effective maximum detectable signal level, typically referred to as the saturation signal, (V
sat
), with respect to the rms. noise level of the sensor, (&sgr;
noise
). This is shown in Equation 1.
Dynamic Range=
V
sat
/&sgr;
noise
  Equation 1
Image sensor devices such as charge coupled devices (CCD) that integrate charge created by incident photons have dynamic range limited by the amount of charge that can be collected and held in a given photosite, (V
sat
). For example, for any given CCD, the amount of charge that can be collected and detected in a pixel is proportional to the pixel area. Thus for a commercial device used in a megapixel digital still camera (DSC), the number of electrons representing Vsat is on the order of 13,000 to 20,000 electrons. If the incident light is very bright and creates more electrons that can be held in the pixel or photodetector, these excess electrons are extracted by the anti-blooming means in the pixel and do not contribute to an increased saturation signal. Hence, the maximum detectable signal level is limited to the amount of charge that can be held in the photodetector or pixel. The DR is also limited by the sensor noise level, &sgr;
noise
. Due to the limitations on Vsat, much work has been done in CCD's to decrease &sgr;
noise
to very low levels. Typically, commercial megapixel DSC devices have a DR of 1000:1 or less.
The same limitations on DR exist for APS devices. The V
sat
is limited by the amount of charge that can be held and isolated in the photodetector. Excess charge is lost. This can become even more problematic with APS compared to CCD due to the active components within the pixel in the APS, limiting the area available for the photodetector, and due to the low voltage supply and clocks used in APS devices. In addition, since APS devices have been used to provide image sensor systems on a chip, the digital and analog circuits used on APS devices such as timing and control and analog to digital conversion, that are not present on CCD's, provide a much higher noise floor on APS devices compared to CCD. This is due to higher temporal noise as well as possibly quantization noise from the on-chip analog to digital converter.
Within the art of semiconductor based image sensors there are numerous disclosures that provide extended dynamic range for both APS and PPS devices. These include (1) measurement of number of clock periods to reach a threshold as taught by Konuma in U.S. Pat. No. 5,650,643; (2) capture of 2 or more correlated images with varying integration times as described by Orly Yadid-Pecht et al. in “Wide Intrascene Dynamic Range CMOS APS Using Dual Sampling” published in the 1997 IEEE Workshop on Charge-Coupled Devices and Advanced Image Sensors; paper #R15; (3) logarithmic transfer function pixel architectures as described by Sypros Kavadias et al. in “On-chip Offset Calibrated Logarithmic Response Image Sensor”, 1999 IEEE Workshop on Charge-Coupled Devices, and Advanced Image Sensors, pp. 68-71, M. Loose et al., “Self-Calibrating Logarithmic CMOS Image Sensor with Single Chip Camera Functionality”, 1999 IEEE Workshop on Charge-Coupled Devices and Advanced Image Sensors, pp. 191-194, N. Ricquier, et al., “Active Pixel CMOS Image Sensor with On-Chip Non-Uniformity Correction”, 1995 IEEE Workshop on Charge-Coupled Devices and Advanced Image Sensors, J. Huppertz et al., “Fast CMOS Imaging with High Dynamic Range”, 1997 IEEE Workshop on Charge-Coupled Devices and Advanced Image Sensors, pp. 1-4; and (4) varying the level of the reset gate during integration as described in prior art references by S. Decker et al., “Comparison of CCD and CMOS Pixels for a Wide Dynamic Range Area Imager”, 1995 IEEE Workshop on Charge-Coupled Devices and Advanced Image Sensors, and “A 256×256 CMOS Imaging Array with Wide Dynamic Range Pixels and Column-Parallel Digital Output”, IEEE Journal of Solid State Circuits, Vol 33, No. 12, December 1998.
U.S. Pat. No. 5,650,643 issued to Konuma (Konuma) teaches a device that can be used to increase the dynamic range of solid state image sensing devices. Konuma shows a means to increase the effective V
sat
level by incorporating a comparator and a counter associated with a photodetector to measure the time required to reach an integrated signal threshold level, and provide this as the only sensor output. The counter is used in conjunction with the comparator to determine the number of counter clock periods that it took the photodetector to reach the signal level of that supplied to the comparator input. The device then provides only the number of counter clock periods as an output or signal value associated with the photodetector.
While the disclosure of Konuma does provide increased dynamic range through effectively increasing V
sat
, this approach has several problems.
First, if one were to have a counter and comparator in each pixel, the number of components in each pixel is very large leading to a pixel with a very small fill factor or a very large pixel. This approach is not practical given the present minimum feature sizes of state of the art semiconductor technology, and the need for small pixel, low cost image sensors.
Second, the output for each pixel is a counter value for the time required to reach a given threshold, and does not contain an analog output value for the actual amount of charge integrated in the photodetector. With this approach, although the effective V
sat
level is increased, the effective DR will be limited by the time period or accuracy of the counter clock, and the size of the counter. For example, if the counter has 10 bits or 1024 counts, the dynamic range is extended to 10 bits provided that the 1024 master clock periods can fit into the desired exposure time. If the desired exposure time were 100 msec., then the counter clock period must be ≦97.6 usec. If one were try to extend the DR to 20 bits, a 20 bit counter would be required, and a counter clock frequency of >10.5 MHz for an exposure time of 100 msec. In this example, the extension of the DR from 10 to bits results in a clock frequency requirement that is 1000 times faster. As the exposure time decreases a commensurately faster master clock is required. For example, if an exposure time of {fraction (1/60)}
th
of a second were desired or required in the case of capturing an image in outdoors in bright sunlight, a master clock of 63 MHz would be required to quantize 20 bits. It is evident that very fast counter clocks are required to provide high dynamic range in typical exposure conditions. Also, as the number of bits in the counter gets larger, more area required to integrate this into the pixel, producing a larger and larger pixel Typical counters require 4-8 transistors per bit. Thus a 20 bit counter would require 80-160 transistors, yielding pixel sizes of >40 um in a 0.35 um CMOS process. Additionally this approach requires that all pixels within the image sensor reach the programmed threshold level in order to have an output value for each pixel. This would require very long exposure times to allow dark regions of the scene to reach the threshold level if the threshold level is near V
sat
. The exposure times could be decreased by programming the threshold level to a very low value, but this would reduce the accuracy of information in very bright regions of the scene since they will reach the threshold value in extremely short time periods.
Thirdly, wit

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Variable collection of blooming charge to extend dynamic range does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Variable collection of blooming charge to extend dynamic range, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Variable collection of blooming charge to extend dynamic range will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2598417

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.