Variable bandwidth communication systems and methods

Multiplex communications – Communication techniques for information carried in plural... – Adaptive

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06282206

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates generally to communication systems, and more particularly to electronic communication systems having variable bandwidths for continuously and bi-directionally linking two or more geographically separated spaces for remote social interaction.
2. Description of the Related Art
People use between-household communication primarily for social reasons: to keep in touch with and coordinate joint activities with a limited number of friends and family. Households are currently linked to one another primarily by telephones and by telephone-extension devices such as answering machines. Other technologies (e.g., the postal service, email, fax), are used on a more limited basis.
Such ongoing contact with significant others is a fundamental human need, and one that current household technologies meet in a less than optimal way. First, there is no technological support for a household to have continuous background awareness of distant households that it cares about, in the way that it has some ongoing awareness of physically neighboring households (e.g., by noticing a car is in the driveway, a lighted window, or muffled sounds of a conversation). Such awareness would allow conversations to take place opportunistically that currently do not take place, and might allow certain currently unwanted conversations to be avoided if such background awareness was sufficient for feeling “in touch.”
In addition, the telephone (currently the primary technological support for remote conversations) embodies a model for initiating and disengaging from social interaction that is rarely found in everyday life. Disregarding for the moment non-basic elements such as busy signals, answering machines, caller-ID, etc., the telephone provides three states: disconnected, ringing, and connected. The model of social interaction created is akin to that created by a windowless room with a closed, locked, and soundproof door. Callers are forced to initiate interaction by knocking (ringing), without any advance indication of the callee's situation within. Similarly, the callee is forced to decide whether to unlock and open the door with very limited information (even more limited in the telephone case, as ringing cannot be varied as can knocking). Once unlocked and thrown open, the conversational partners confront each other at close range, with little ability to adjust social distance to a mutually desired level. Conversations end, with little subtlety or room for re-engagement, by shutting the door and returning to an entirely disengaged state. People have adapted to such an unnatural model remarkably well, but a technology that offers a more flexible and subtle model of gradual, foreshadowed, and mutually-negotiated approach would be highly desirable.
There is presently a lack of devices which simply relay information concerning the presence of individuals at remote locations for social purposes. Functionally, the closest analog to a social presence device is the real-world situation of living next door to a neighboring house. In such a situation, one can notice various things about the neighbor's house (and patterns in the neighbors activity) that would allow one to initiate a conversation at an opportune time, if one so wished.
Baby monitors, both audio and now video, are one of the few, if not the only, awareness technologies on the market. In the CSCW (Computer Supported Cooperative Work) research world, Montage from Sun Microsystems implements a kind of “video glancing” that allows messages to be left if “glancing” reveals the recipient to be unavailable.
The term “media space” refers to the linking of a number physically separated spaces to create a larger “virtual space” for communication between various individuals. Researchers have noticed that it is very difficult to document an objective gain from use of media spaces in workplaces, but also that the users nevertheless were unanimous about the usefulness of these systems. A stated advantage is the social awareness that is provided and which may be conducive to deciding when direct communication would be appropriate. The awareness issue is sometimes referred to as the support for background communication, see for instance William Buxton's GI (Graphical Interface) '95-paper about foreground and background.
A problem with media space is that it is typically a high-bandwidth medium, which creates serious privacy issues. The “Porthole System” from Rank Xerox EuroParc partially addresses this problem by sacrificing image quality in order to obtain a continued sense of presence without providing real-time imagery. However, their choice was to lower the frame rate while keeping the image resolution high. Avatar design and research provides abstraction and synthesization to reduce the privacy issue.
Technologies that allow a communicating party to refuse a connection attempt without having to give an explicit refusal of access include: caller ID, call screening through answering machines; mirror windows, door spies. However, these technologies provide this feature unilaterally, namely to the callee only. Other technologies that allow a communicating party to “prepare” for the communication: media space systems that convey room images.
What the related art does not suggest, however, are classes of technologies of varying bandwidths that permit remote social interactions at different threshold levels for a variety of purposes.
SUMMARY OF THE INVENTION
The present invention provides a remote communication system capable of communicating at various bandwidths. By “bandwidth” it is meant the amount of information that must be transmitted, received, stored, or displayed within a given period of time. Users of the system can use a “negotiation” process to determine the bandwidth of the transmitted communications and the bandwidth, or intrusiveness, of the resultant display.
A variable bandwidth communication system of the present invention includes a first communication station and a second communication station coupled to the first communication station for continuous, bi-directional communication with the first communication station. The first communication station is capable of transmitting at a first bandwidth and a second bandwidth that is greater than the first bandwidth, and is capable of receiving at a third bandwidth and a fourth bandwidth greater than the third bandwidth. The transmitting bandwidth of the first communication station is selectable by a first user. The second communication system is capable of receiving at a first bandwidth and at the second bandwidth, and is capable of transmitting at the third bandwidth and the fourth bandwidth. The transmitting bandwidth of the second communication station is selected by a second user. Preferably, but not necessarily, the first bandwidth and the third bandwidth are about the same, and the second bandwidth and the fourth bandwidth are about the same. Often, the second bandwidth is at least two orders of magnitude greater than the first bandwidth.
A method for variable bandwidth communication in accordance with the present invention includes selectively and continuously transmitting communications from a first communication station at one of a first bandwidth and second bandwidth, and continuously receiving communications at the first communication station at one of a third bandwidth and a fourth bandwidth. A method further includes selectively and continuously transmitting communications from a second communication station at one of the third bandwidth and the fourth bandwidth, and continuously receiving communications at one of the first and second bandwidth. The second bandwidth is greater than the first bandwidth, and the fourth bandwidth is greater than the third bandwidth. Preferably, but not necessarily, the first bandwidth and third bandwidth are about the same and the second bandwidth and the fourth bandwidth are about the same.
A communication station in accordance with the present invention includes a data pr

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Variable bandwidth communication systems and methods does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Variable bandwidth communication systems and methods, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Variable bandwidth communication systems and methods will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2544172

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.