Wave transmission lines and networks – Long line elements and components – Connectors and interconnections
Reexamination Certificate
2002-04-02
2004-04-13
Nguyen, Long (Department: 2816)
Wave transmission lines and networks
Long line elements and components
Connectors and interconnections
C333S101000, C333S08100R, C327S308000
Reexamination Certificate
active
06720850
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates a variable attenuator for use in an SPST (Single-Pole Single-Throw) switch, an SPDT (Single-Pole Double-Throw) switch, etc, which conducts or blocks a high-frequency signal and, more particularly, to a variable attenuator which provides a variable attenuation to a high-frequency signal during conduction.
2. Description of the Related Art
Known as a high-frequency switch for conducting or blocking a high-frequency signal are resonance type high-frequency switches (as disclosed in Japanese Unexamined Patent Application Publication No. 2000-114950 and its corresponding U.S. Pat. No. 6,281,762), which include a field-effect transistor (hereinafter referred to as an FET), an inductive element, a capacitive element, etc. Such a high-frequency switch switches between a parallel resonance state and a serial resonance state in synchronization with the on and off operation of the FET by appropriately setting inductance of the inductive element and capacitance of the capacitive element. In this way, the conventional high-frequency switch conducts a high-frequency signal at the serial resonance state thereof and blocks the high-frequency signal at the parallel resonance state thereof.
When a variable attenuator for attenuating the high-frequency signal is mounted on the high-frequency switch, an FET for attenuation, separately from the FET forming the high-frequency switch, is connected to the high-frequency switch. In this way, a voltage applied between the gate and the source of the attenuator FET is controlled to control the amount of attenuation of the high-frequency signal conducted between the drain and the source.
In the above conventional art, the high-frequency switch and the variable attenuator are separately produced. For this reason, the entire unit becomes bulky when the high-frequency switch and the variable attenuator are produced on an MMIC (Monolithic Microwave Integrated Circuit) fabricated of an expensive material such as GaAs, and the manufacturing cost of the switch increases. Since the amount of attenuation is set by the attenuating FET only, a large amount of attenuation cannot be set.
SUMMARY OF THE INVENTION
The present invention has been developed in view of the above problem and it is an object of the present invention to provide a variable attenuator which sets a large amount of attenuation, involves a low manufacturing cost, and has a compact overall size.
To resolve the above problem, a variable attenuator of the present invention in one aspect includes an FET, an inductive element connected to one of the source and the drain of the FET, a capacitive element connected in parallel with the series connection of the inductive element and the FET, a first terminal and a second terminal respectively connected to both ends of the capacitive element, and an attenuation setting unit which variably sets the amount of attenuation to a signal transmitted across the first terminal and the second terminal by varying the gate voltage of the FET.
In this arrangement, the circuit between the two terminals is broken when the FET is turned on, and the circuit between the two terminals is made when the FET is turned off. With the FET set in the vicinity of pinchoff to achieve a conductive state between the two terminals, the attenuation setting unit variably sets the amount of attenuation.
Since the attenuator is formed of a resonance type SPST switch including the FET, the inductive element, and the capacitive element, the attenuator has a wide range of attenuation and a large amount of attenuation compared with the case in which an attenuator is formed of an FET alone.
Preferably, the variable attenuator further includes a constant-voltage source, connected to one of the source and the drain of the FET, for supplying a constant voltage, wherein the attenuation setting unit is a variable-voltage generator which is connected to the gate of the FET to variably set the gate voltage of the FET.
The voltage difference between the constant voltage provided by the constant-voltage source and the voltage provided by the variable-voltage generator is applied to the FET as a gate voltage (a gate-source voltage or a gate-drain voltage), thereby variably setting the amount of attenuation between the two terminals.
Preferably, the gate of the FET is grounded, and the attenuation setting unit is a variable-voltage generator which is connected to one of the source and the drain of the FET to variably set the voltage of one of the source and the drain of the FET.
The voltage difference between the ground voltage and the voltage provided by the variable-voltage generator is applied to the FET as the gate voltage, thereby variably setting the amount of attenuation between the two terminals. For this reason, the amount of attenuation is set by connecting the single variable-voltage generator to the one of the source and the drain of the FET.
A variable attenuator of the present invention in another aspect includes a first FET, a first inductive element connected to one of the source and the drain of the first FET, a first capacitive element connected in parallel with the series connection of the first inductive element and the first FET, a second FET, a second inductive element connected to one of the source and the drain of the second FET, a second capacitive element connected in parallel with the series connection of the second inductive element and the second FET, a first terminal connected to each end of the first capacitive element and the second capacitive element, a second terminal connected to the other end of the first capacitive element, a third terminal connected to the other of the second capacitive element, a voltage switch which makes or breaks the circuit between the first terminal and the third terminal by varying the gate voltage of the second FET, and an attenuation setting unit which variably sets the amount of attenuation to a signal transmitted across the first terminal and the second terminal by varying the gate voltage of the first FET.
In this arrangement, the circuit between the first terminal and the third terminal is broken when the voltage switch turns on the second FET, and the circuit between the first terminal and the third terminal is made when the voltage switch turns off the second FET. The circuit between the first terminal and the second terminal is broken when the attenuation setting unit turns on the first FET, and the circuit between the first terminal and the second terminal is made when the attenuation setting unit turns off the first FET. In this way, the signal transmitted across the two terminals is attenuated by causing the attenuation setting unit to operate the first FET in the vicinity of pinchoff during the conductive state of the attenuator.
A variable attenuator of the present invention in yet another aspect includes one FET, an inductive element connected to one of the source and the drain of the one FET, a capacitive element connected in parallel with the series connection of the inductive element and the one FET, another FET with one of the source and the drain thereof connected to the node of the capacitive element and the one FET, a first terminal connected to the node of the capacitive element and the one FET, a second terminal connected to the other end of the capacitive element opposite from the first terminal with respect to the capacitive element, a third terminal connected to the other end of the other FET opposite from the first terminal with respect to the other FET, and an attenuation setting unit which variably sets the amount of attenuation to a signal transmitted across the first terminal and the second terminal by varying the gate voltage of the two FETs.
In this arrangement, the circuit between the first terminal and the second terminal is broken and the circuit between the first terminal and the third terminal is made when the attenuation setting unit causes the two FETs to turn on. The circuit between the first terminal and the second termin
Nakao Motoyasu
Sasabata Akihiro
Dickstein Shapiro Morin & Oshinsky LLP.
Murata Manufacturing Co. Ltd.
Nguyen Long
LandOfFree
Variable attenuator does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Variable attenuator, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Variable attenuator will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3258920