Variable air volume environmental management system...

Automatic temperature and humidity regulation – Ventilator type – Electrically actuated

Reissue Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C236S07800D, C454S258000, C165S217000

Reissue Patent

active

RE037245

ABSTRACT:

TECHNICAL FIELD OF THE INVENTION
The present invention relates to control systems for environments such as office buildings and commercial establishments, and more particular, to a variable air volume (VAV) environmental management system that integrates a fuzzy logic control system in a stand-alone package for providing all necessary functions of a VAV terminal that may be easily networked into a complex environmental management system and that uses fuzzy logic to provide precise temperature control with the minimal amount of system setup.
BACKGROUND OF THE INVENTION
A variable air volume (VAV) environmental management or air conditioning system modulates the amount of air that flows to different offices or locations within an environment such as an office building or other dwelling structure where numerous people live or work. By maintaining constant the temperature that flows through dampers of the air conditioning system and, instead adjusting the position of the damper or the volume of air that flows through the damper to the various locations within the environment, is possible to more efficiently and effectively address the comfort needs of different locations within the environment.
Known VAV controllers are large remote electronic boxes or cabinets that electrically connect to actuator motors that control the position of the dampers of the environmental control system. These controllers are often, for example, pneumatic controllers or electrical controllers that respond to temperature input to adjust the position of the damper in response to the sensed temperature of the various locations. These pneumatic drives or electrical systems are generally not inter-related from one location to another within the environment. As a result, compensating for temperature differences in one location frequently generates air flow problems in other locations within the environment. The air conditioning system, in these instances, operates in less than an ideal mode.
In recent years, microprocessors have been used to improve the efficiency of controlling various locations within the office or environment. These microprocessors attempt to relate locations within the environment to one another by using an air velocity pickup probe input. The air velocity pickup probe provides an input to the microprocessor that permits the microprocessor to compensate for drops in air flow to one location that arise from an increase in air flow to another location. In other words, microprocessor-based VAV terminal controllers attempt to improve the overall operation of the environmental management system by compensating for drops in air flow that occur as temperature needs or setpoints change at different locations within the environment. There are, however, significant limitations that associate with existing microprocessor-based VAV terminal controllers.
Significant limitations of existing microprocessor-based VAV terminal controllers are, for example, that the systems are bulky and include large printed circuit boards that mount within separate controller chassis. These known systems include motors and wires to control the damper motor in the environmental control system. In addition, existing microprocessor-based controllers at best use local area network technology for system data communication. Local area networks, however, are not designed for communicating control system data within a control system architecture. These local area networks inefficiently communicate temperature, pressure and other variable values from one location to another and to a central file server.
Another limitation associated with existing microprocessor-based VAV terminal controllers is the use of complicated instruction sets for generating the desired damper actuator control signal. For example, even the most efficient VAV terminal controllers use a control algorithm known as a proportional integral differential (PID) algorithm to drive the damper motor. The PID algorithm itself is complex and requires significant computational resources to generate the desired damper motor operating signal. The complexity of the PID algorithm requires significant setup time for each of the locations within the office or commercial environment. The setup time and inherent complexity of the algorithm makes such systems prone to error and highly susceptible to less than optimal performance.
Consequently, there is a need for an improved microprocessor-based VAV terminal controller that avoids the space requirements and separate bulky controller circuit chassis of existing microprocessor-based VAV terminal controllers.
There is a need for an improved microprocessor-based VAV terminal controller that is more effectively operable with other aspects of the environmental management system as well as with the VAV air conditioning system within the environmental management system.
There is yet the need for an improved VAV terminal controller that is simple to setup and use and that avoids the complexity of existing microprocessor-based controllers that use PID control instructions or other similarly complicated instructions to adjust for the differences in air flow within the air conditioning portion of the environmental control system.
SUMMARY OF THE INVENTION
The present invention, accordingly, provides an improved VAV terminal controller that overcomes limitations and disadvantages of existing VAV terminal controllers and that controls dampers at locations within a VAV air conditioning system and that integrates a fuzzy logic control system to more efficiently communicate with the associated environmental control system and that in a stand-alone package, attaches to the damper actuator motor.
The improved VAV terminal controller, according to one aspect of the invention, includes temperature sensing circuitry for generating a temperature process value. Temperature setpoint determining circuitry establishes a temperature setpoint. Air flow signal circuitry generates an air flow setpoint in response to the temperature process value and the temperature setpoint. Airflow sensing circuitry generates the airflow process value in response to a predetermined set of airflow sensing inputs. Damper control circuitry generates a damper motor operation signal to control the damper actuator motor in response to the airflow process value and the airflow setpoint. The damper control circuitry includes a fuzzy logic control mechanism for implementing a set of fuzzy logic or rule-based instructions in generating the damper actuator motor operating signal.
A technical advantage of the present invention is that it provides in a single module a control device for operating the damper actuator motor of a VAV air conditioning system. The present invention is so compact that it may be positioned on the damper actuator motor itself, instead of at a remote site in a separate control circuitry chassis. The present invention incorporates advanced packaging technology to eliminate the need for a large printed circuit board chassis that conventional VAV terminal controllers require. A VAV air conditioning system that employs the present invention, therefore, is easier to install, operate, and maintain than systems that use conventional microprocessor-based VAV terminal controllers.
Another technical advantage of the present invention is that it provides a local, stand-alone control mode or a network control mode using a high-speed, open protocol within a local operating network (LON®). The protocol that the present invention uses more effectively communicates temperature values, pressure values, and other values and parameters than do systems that employ protocols of local area networks (LANs). The present invention includes operating firmware in a single integrated circuit device that requires no interfaces or protocol converters and that may be completely inter-operable with other (LON®) systems.
A further technical advantage of the present invention is that it implements a fuzzy logic or rule-based control instruction set to more efficiently generate the desired damper

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Variable air volume environmental management system... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Variable air volume environmental management system..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Variable air volume environmental management system... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2466420

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.