Vapor space pressure control system for underground gasoline...

Fluent material handling – with receiver or receiver coacting mea – Diverse fluid containing pressure filling systems involving... – Gas and other material separating passage or chamber

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C141S059000, C141S082000

Reexamination Certificate

active

06763856

ABSTRACT:

The invention relates to underground gasoline storage tanks, and more particularly to systems for controlling escape of gasoline vapor from such tanks.
BACKGROUND
During refueling of automobiles and other vehicles, liquid gasoline is delivered into the vehicle fuel tank, and a mixture of gasoline (or other fuel) vapor and air is displaced from the tank. To minimize escape of gasoline vapor into the atmosphere, gasoline dispenser nozzles are typically equipped (as often mandated by local environmental protection regulations) with vapor recovery vacuum systems to collect the displaced gasoline vapor, and air, and deliver it back into the ullage (i.e., vapor) space of the underground storage tank (“UST”). Preferably, a 1-to-1 ratio balance is sought between volume of liquid gasoline drawn from the underground storage tank, e.g., during vehicle refueling, to volume of gasoline vapor and air returned into the ullage space by the vapor recovery system. However, due to a combination of factors, including, e.g., differences in temperature, inefficiencies in the vapor recovery system, ingestion of excessive external air, etc., such a balance is difficult to achieve. As a result, some amount of gasoline vapor may be discharged, or air ingested, through the UST pressure/vacuum relief vent valve during any 24-hour period of operation.
This problem has been addressed, in part, by design of ORVR (“onboard refueling vapor recovery”) equipped vehicles, in which gasoline vapor collecting in the ullage space of the vehicle tank is recovered onboard the vehicle, making it necessary for the fuel dispensing system to recover only a relatively smaller volume of gasoline vapor and air during refueling, e.g., as compared to non-ORVR vehicles. As a result of the differences between ORVR-equipped and non-ORVR-equipped vehicles, and the fact that both types of vehicles are in regular use, fuel dispensing systems must be designed to detect and accommodate different vapor recovery requirements.
One such fuel dispensing system employs the Healy 800 Nozzle, from Healy Systems, Inc., of Hudson, N.H., assignee of the present application, which is embodied in my earlier U.S. Pat. No. 6,095,204, issued Aug. 1, 2000, the complete disclosure of which is incorporated herein by reference. However, during ongoing field-testing of the Healy 800 Nozzle for purposes of addressing a need to prevent return of too much air when refueling ORVR-equipped vehicles, a troubling phenomenon has been uncovered. A feature of the Healy 800 Nozzle is that it reduces the volume of air returned to the underground storage tank to approximately 25% of the liquid volume dispensed to an ORVR-equipped vehicle. It has been discovered that this can create a problem in a busy service station because ORVR refueling can cause the vapor space pressure to fall to −8.0 inches W.C. (“water column”), at which point the UST pressure/vacuum relief vent valve will open, thus introducing air into the UST. For example, calculations show that less than 600 gallons of gasoline dispensed to ORVR-equipped vehicles can reduce the UST pressure by +8.0 inches W.C. when the ullage space is 20,000 gallons. Additional fueling of ORVR-equipped vehicles beyond that point will then result in a one-to-one relationship of air returned to the UST versus liquid gasoline dispensed, as the Healy 800 Nozzle will continue to return air at a 25% rate while the pressure/vacuum relief vent valve will continue to reopen to allow inward air flow equal to 75% of the liquid gasoline dispensed. Later, when sales activity slows down in the evening and refueling of ORVR-equipped vehicles drops off, the large quantity of air previously ingested will promote evaporation of liquid gasoline into the air in the ullage space, as the enclosed system of gas and liquid moves toward an equilibrium of hydrocarbon concentration in the ullage space with the volume of liquid gasoline. The increasing concentration of gasoline vapor will cause the pressure in the UST to rise, potentially to a positive pressure of +3.0 inches W.C., which will cause the pressure/vacuum relief vent valve to reopen, releasing gasoline vapor into the environment. The problem is not apparent for service stations pumping an average of less than about 150,000 gallons per month; however, it can be very pronounced for larger sites, e.g., those that pump an average over about 500,000 gallons per month.
SUMMARY
According to one aspect of the invention, a method for controlling pressure in a vapor or ullage space of an underground storage tank of volatile liquid fuel comprises the steps of: removing liquid fuel from the underground storage tank for delivery into a vehicle fuel tank; delivering into the ullage space of the underground storage tank, to replace the volume of liquid fuel removed, a gaseous flow comprising fuel vapor and air displaced from the fuel tank by delivery of the fuel and/or air; and treating the gaseous flow into the ullage space to increase the concentration of fuel vapor in the gaseous flow toward saturation.
Preferred embodiments of this aspect of the invention may include one or more of the following features. The method comprises the step of causing the gaseous flow to pass through a gaseous flow conditioning apparatus defining at least one fog chamber into which liquid fuel is delivered through mist heads, thereby to increase the concentration of fuel vapor in the gaseous flow passing into the ullage space. The method comprises the steps of causing the gaseous flow to pass through a gaseous flow conditioning apparatus containing a liquid fuel-wetted saturation medium, and causing the gaseous flow to pass in close proximity to surfaces of the liquid fuel-wetted saturation medium. Preferably, the method comprises the further step of causing the gaseous flow to pass within about {fraction (1/16)} inch, and more preferably to pass within about 0.050 inch, from surfaces of the liquid saturation medium. The method comprises the further step of providing liquid fuel-wetted saturation medium comprising fuel-wetted wire mesh, stacked layers of wire cloth, or multiple panels of solid material, e.g. cloth, with opposed surfaces defining cannels for passage of gaseous flow. The method comprises the steps of entraining the gaseous flow into a stream of liquid fuel for delivery into a volume of liquid fuel, and allowing the gaseous flow to bubble through liquid fuel in the volume to increase the concentration of fuel vapor in the gaseous flow passing into the ullage space. Preferably the method comprises the step of entraining the gaseous flow in a jet of liquid fuel.
According to another aspect of the invention, a system for controlling pressure in the vapor or ullage space of an underground storage tank of volatile liquid fuel comprises means for treatment of a gaseous flow of air and/or vapor and air mixture into the ullage space in a manner to increase the fuel vapor concentration in the gaseous flow toward saturation.
Preferred embodiments of this aspect of the invention may include one or more of the following features. The means for treatment comprises a gaseous flow conditioning apparatus defining at least one fog chamber with mist heads through which liquid fuel is delivered into the fog chamber, the fog chamber defining at least one channel for passage of the gaseous flow therethrough into the ullage space. The means for treatment comprises a gaseous flow conditioning apparatus containing a liquid fuel-wetted saturation medium defining at least one channel for passage of the gaseous flow therethrough into the ullage space. Preferably, the liquid fuel-wetted saturation medium comprises wire mesh, wire cloth, or multiple panels of solid material, e.g. cloth. Preferably, the channel is defined by opposed surfaces spaced apart by about ⅛ inch, thereby to confine passage of the gaseous flow through the channel to pass within about {fraction (1/16)} inch from an opposed surface. More preferably, the opposed surfaces are spaced apart by about 0.100 inch, thereby to confine passage of the g

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Vapor space pressure control system for underground gasoline... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Vapor space pressure control system for underground gasoline..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Vapor space pressure control system for underground gasoline... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3215617

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.