Vapor recovery system for mobile fuelers

Fluent material handling – with receiver or receiver coacting mea – Evacuation apparatus

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C141S059000, C141S098000, C141S231000, C141S285000

Reexamination Certificate

active

06176275

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to systems for delivering volatile liquids, such as gasoline or other fuels, to vehicles, and more particularly to vapor recovery systems for fuel trucks or other mobile fuelers that recover vapors from fuel dispensers during fuel delivery.
BACKGROUND
Volatile liquids, such as gasoline or other fuels, are generally delivered to the fuel tank of an automobile or other vehicle using a fuel dispensing nozzle. During delivery, gasoline vapors may evaporate from liquid gasoline due to heat and/or agitation of the gasoline. If these vapors are not recovered, they may escape from the nozzle, contributing to air pollution and/or wasting fuel resources. Thus, recovery of vapors resulting from the delivery of gasoline may be desirable and, in addition, may be mandated by regulatory agencies. For example, in the 1970's, the State of California enacted legislation requiring recovery of at least 94.5 percent of all vapors resulting from fuel delivery.
To recover gasoline vapors during delivery, fuel dispensing nozzles having a coaxial construction are often used. The nozzle generally has an inner spout connected to a supply line which provides a supply outlet for the gasoline being supplied to the fuel tank being filled. A vapor conduit, such as a boot assembly, surrounds the inner spout which has a vapor inlet proximate the supply outlet. The nozzle is connected to a coaxial hose, which is connected to a valve which separates the supply line from the vapor line.
Generally, the nozzles and hoses are connected to stationary pumps, such as at service stations, which are connected to storage tanks, often located underground, that store large volumes of fuel. Vapor recovery systems for such stationary fuels sources have been proposed and implemented which recover a substantial amount of the vapors from fuel dispensing nozzles. For example, U.S. Pat. No. 4,068,687 issued to Long discloses a system which includes a hydraulic motor and a pneumatic pump synchronized with one another and connected to the supply and vapor lines, respectively. The gasoline flowing from the supply pump drives the hydraulic motor, and the pneumatic pump then withdraws vapors from the fuel tank being filled, which may then be directed back to the storage tank. Similarly, U.S. Pat. No. 5,207,249 issued to Healy discloses a liquid jet gas pump that may be mounted in the main supply line to create a vacuum in a vapor line.
For mobile fuelers, such as fleet fueling trucks, however, conventional vapor recovery systems have been unable to efficiently recover gasoline vapors during delivery. Vapor pressures encountered in the storage tanks of mobile delivery systems may be substantially higher than those found in underground stationary tanks, for example, due to increased heat experienced by mobile fuel truck storage tanks and/or increased agitation of the gasoline resulting from movement of the fuel truck. Despite regulations in California and elsewhere since the 1970's, an efficient vapor recovery system for mobile fuelers has not been successfully developed.
Accordingly, there is a need for a more efficient vapor recovery system for mobile fuelers.
SUMMARY OF THE INVENTION
The present invention is directed to a fuel delivery and vapor recovery system for a mobile fueler, and to methods of recovering fuel vapor from mobile fueling systems. In accordance with one aspect of the present invention, a system is provided that includes a mobile storage tank having a liquid region and a vapor region therein. The storage tank is at least partially covered with a layer of insulation, such as polyurethane foam, providing a predetermined thermal insulating value, preferably at least about R-14.
A supply pump is connected to the storage tank for delivering fuel from the liquid region, and a fuel dispensing assembly is connected in line with the supply pump. The fuel dispensing assembly preferably includes a supply outlet for delivering fuel from the storage tank to a vehicle being fueled, and a vapor recovery inlet proximate the supply outlet. A diverter valve is provided for diverting a portion of the fuel in the supply line, and one or more vacuum jet pumps are connected by a vapor line to the vapor recovery inlet and also to the diverter valve. The vacuum jet pump is driven by the fuel diverted from the supply line to create a predetermined vacuum pressure in the vapor line, the vacuum jet pump being connected to the storage tank to direct vapor from the vapor recovery inlet through the vapor line into the vapor region of the storage tank.
In a preferred form, the system also includes a vapor pot in the vapor line for separating liquid fuel from vapor in the vapor line, the vapor pot being preferably mounted at a low point of the system. The vapor pot may be connected to the supply line for returning separated liquid fuel back to the supply line, for example, by a siphon check valve connected between the vapor pot and the supply line.
In another aspect of the present invention, a kit is provided for retrofitting a mobile fueler having an existing storage tank and supply line, preferably including a supply pump, for delivering fuel from the storage tank to a vehicle being fueled. The kit may include a diverter valve, a fuel dispensing assembly including a supply outlet for delivering fuel to the vehicle being fueled, and a vapor recovery inlet proximate the supply outlet, a vapor pot and a vacuum jet pump.
The diverter valve may be connectable in the supply line for diverting a portion of the fuel being delivered from the storage tank, and the fuel dispensing assembly may be connectable to the supply line. The vapor pot may be connectable by a vapor line to the vapor recovery inlet for separating liquid fuel from vapor in the vapor line. The vacuum jet pump has a vapor inlet connectable to the vapor line, a vapor outlet connectable to the storage tank, and a fuel inlet connectable by a fuel diversion line to the diverter valve. The vacuum jet pump has a fuel path through which fuel diverted from the supply pump may be directed to create a predetermined vacuum pressure in the vapor inlet and consequently in the vapor line.
In a preferred form, the fuel dispensing assembly includes a coaxial hose and nozzle, a vapor adapter splitter valve, and may include a hose reel for storing the coaxial hose or other hose retractor assembly. The kit also preferably includes foam insulation for covering at least a portion of the storage tank, the foam insulation having a thermal insulating value preferably of at least about R-14.
Preferably, the vacuum jet pump is configured to generate a vacuum between about −20 inches and about −80 inches of water column at the vapor inlet when driven by a fuel pressure between about 20 psi and about 40 psi. More preferably, the vacuum jet pump generates a vacuum pressure in the vapor line between about −20 inches and about −40 inches water column when fuel is being delivered through the fuel dispensing assembly, and between about −40 inches and about −72 inches of water column when fuel is not being delivered. Thus, the kit, when incorporated into a fuel delivery system, may provide a vapor recovery system capable of recovering at least about 95% of the fuel vapor emitted by the fuel dispensing assembly.
In accordance with still another aspect of the present invention, a method is provided for recovering fuel vapor during delivery of fuel from a mobile fuel delivery system to a vehicle. The method may include the steps of providing a mobile storage tank and a supply line communicating with the storage tank, and providing a fuel dispensing assembly connected to the supply line, the fuel dispensing assembly comprising a supply outlet and a vapor recovery inlet proximate the supply outlet. Fuel may be directed from the storage tank through the supply line to the supply outlet, and a portion of the fuel in the supply line may be diverted to generate a predetermined vacuum pressure at the vapor recovery inlet to

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Vapor recovery system for mobile fuelers does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Vapor recovery system for mobile fuelers, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Vapor recovery system for mobile fuelers will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2436759

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.