Valves and valve actuation – Mechanical movement actuator – Cam
Reexamination Certificate
2002-03-04
2004-04-20
Bastianelli, John (Department: 3754)
Valves and valve actuation
Mechanical movement actuator
Cam
C251S288000, C251S301000, C251S340000
Reexamination Certificate
active
06722631
ABSTRACT:
CROSS-REFERENCE TO RELATED APPLICATIONS
This application claims priority to Great Britain Patent Application No. 0105905.4 filed Mar. 9, 2001, which application is herein expressly incorporated by reference.
BACKGROUND OF THE INVENTION
The present invention relates to a valve device and a method of connecting a container filled with a flowable material, such as fertilizer, pesticide or the like, to a receptacle, for instance of an applicator device for dispensing the material.
It is known to provide dispensing or applicator devices for distributing fertilizer or pesticide in a field. Containers of the fertilizer or pesticide may be provide for attachment to the dispensing or applicator device, such that, when a container is empty, it may be removed and replaced with a full one.
It is preferable that users of the dispensing device do not come into contact with the material in the containers.
EP-A-0389919 discloses a valve system for controlling the flow of a flowable agricultural treatment agent from a container for the material to a receiving chamber or hopper. The container has a material dispensing valve and the chamber or hopper has a material receiving valve. The dispensing valve and the receiving valve are adapted to be coupled and uncoupled so that, on being coupled, both valves are opened to allow material to flow from the container to the hopper and, on being uncoupled, both valves are biassed to a closed position.
Although this system prevents the user from coming into contact with the material in the container, it is relatively complex and expensive.
EP-A-0685155 discloses a valve device comprising a cylindrical housing in which a cylindrical valve member is axially displaceable. The housing includes a valve seat around the inner end of a flow passage and the cylindrical valve member has a valve disk which selectively seals with the valve seat. In particular, by virtue of a cam groove, relative rotation of the two cylinders causes them to move towards or away from one another and thereby close or open the valve.
This valve device still has a number of disadvantages. In particular, it requires the two halves of the valve device to move axially which, in turn, requires the container to move axially with respect to the receptacle to which it is attached. Also, closing the valve may be difficult when the valve plate has to move against a weight of flowable material. Furthermore, the available through passage for the flowable material is limited to the peripheral space around the valve disk when it is moved away from the valve seat.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide an alternative valve device which is relatively simple and which achieves automatic opening and closing when being attached to or detached from a receptacle.
According to the present invention, there is provided a valve device for connecting a container filled with a flowable material to a receptacle and for dispensing the flowable material from the container into the receptacle, the valve device including an outer sleeve having a first end to be secured to the orifice of a container, a second end for releasable attachment to a receptacle and walls defining a generally cylindrical support passage extending from said first end to said second end, an inner sleeve within the support passage having walls defining a generally outer surface adjacent the walls of the outer sleeve so as to rotatably support the inner sleeve and defining an internal through passage, a butterfly valve member within the through passage having diametrically opposed first and second pivot stubs extending at least into the walls of the inner sleeve and rotatably supported by the walls of one of the inner and the outer sleeve wherein the walls of the other of the inner and outer sleeve are shaped so as to interact with at least the first pivot stub such that relative rotation of the inner and outer sleeve causes the butterfly valve member to rotate between a closed state in which the butterfly valve member closes the through passage by substantially filling an internal cross-section of the through passage and an open state in which the through passage is open.
Thus, the valve member may be provided in or adjacent the orifice of a container and normally have the butterfly valve member in a closed state. By rotating the inner and outer sleeves relative to one another, for instance as a part of engaging the valve device with a receptacle for the flowable material, the first pivot stub and, hence, the butterfly valve member are rotated to an open position to allow flow through the valve device.
In use, once a container has been connected to a receptacle using the valve device, the flowable material can all be dispensed into the receptacle and then the valve device and container detached. However, in a preferred application, the container and valve device are left connected until more material is required. In this way, the receptacle does not have to receive all of the flowable material at once and is supplied from the container according to its needs.
No axial movement is required to open and close the valve and, with the butterfly valve fully open, the only restriction to flow is the thickness of the butterfly valve itself. Furthermore, by virtue of the property of a butterfly valve that one side moves in a direction opposite to the other side, moving the valve against the flowable material is made easier, since material will merely flow from one side of the passage to the other.
The flowable material is preferably of solid form, for instance of granular form, but might also be liquid if the valve is designed to seal appropriately.
The butterfly valve itself preferably comprises a plate-like member having a shape corresponding to the internal cross-sectional area of the inner sleeve. This is preferably circular, but could be square or any other cross-sectional shape. The plate-like member may have a shape corresponding to an internal cross-sectional area which is angled, i.e. not perpendicular, to the axis of the inner sleeve so that it cannot rotate within the inner sleeve beyond that position. The butterfly valve then includes a rotational axis through approximately its middle and in its own plane.
The first and second pivot stubs can be rotatably supported in the outer sleeve and pass through apertures in the inner sleeve shaped so as to rotate the butterfly valve. In this case, the pivot stubs need not extend right through the outer sleeve, but may be supported in indented portions.
On the other hand, the first and second pivot stubs may be rotatably supported by the inner sleeve. In which case, only the first pivot stub need pass through the inner sleeve so as to interact with the outer sleeve and the second pivot stub could be supported merely by an indented portion in the walls of the inner sleeve.
The interacting sleeve may have walls shaped in any appropriate way to rotate the first pivot stub. For instance, an elongate aperture having teeth along one surface may interact with teeth provided around the outer periphery of the first pivot stub. Alternatively, an end face of the first pivot stub may be provided with a radially extending slot interacting with a pin or provided with a cranked pin interacting with a slot.
Preferably, the walls of the other of the inner and outer sleeves include a profiled opening and the first pivot stub extends into the profiled opening and includes a cam member such that relative rotation of the inner and outer sleeves causes interaction of the cam member and the profiled opening to rotate the butterfly valve member between the closed and opened states.
Of course, the profiled opening may be provided in either of the inner or outer sleeves, provided that the first and second pivot stubs are rotatably supported by the other of the inner and outer sleeves.
Preferably, the cam member extends radially of the first pivot stub. In this way, lateral movement applied to the cam member will cause rotational movement of the first pivot stub and the butterfly valve member.
Aventis Cropscience S.A.
Bastianelli John
Harness & Dickey & Pierce P.L.C.
LandOfFree
Valve device does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Valve device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Valve device will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3201756