Valve control mechanism

Internal-combustion engines – Poppet valve operating mechanism – With means for varying timing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C123S090170, C123S090500

Reexamination Certificate

active

06474281

ABSTRACT:

BACKGROUND TO THE INVENTION
This invention relates to a valve control mechanism for an internal combustion engine, to engines containing such mechanisms and to a method of operating the valves of an internal combustion engine.
Our British Patent No. 2 190 140 describes and claims a valve control mechanism which comprises: a camshaft carrying a plurality of cams, the camshaft being mounted in a cam carrier and being arranged for a limited degree of axial movement and having associated with it means for effecting such movement, each of the cam surfaces having an outline, in a section plane containing the axis of the camshaft, which is not parallel to that axis, whereby in use the valve action is a function of the axial location of the camshaft within the range of permitted axial movement, the mechanism also comprising a cam follower for each cam, the cam follower comprising a one-piece body which reciprocates within a slideway and at one extremity acts upon the end of a valve stem through only a shim and has at the opposite extremity a trough of part-circular cross-section which receives a member in the form of a segment of a circular cylinder, the curved surface of which faces the interior surface of the trough, so that said member can turn with respect to said body, whilst a planar side surface of the member faces the cam surface. The present invention offers developments derived from this earlier valve control mechanism.
SUMMARY OF THE INVENTION
According to one aspect of the present invention, there is provided, in or for use in an internal combustion engine, a valve control mechanism which comprises: a camshaft carrying a plurality of cams, the camshaft being mounted in, or being adapted to be mounted in, a cylinder head or cam carrier, the valve control mechanism further including means for relatively advancing and retarding the rotation of the camshaft, said advance/retard means comprising a piston housed and axially displaceable within a cylinder, the axial position of said piston being under hydraulic control, and a mechanical coupling between said piston and the camshaft, said mechanical coupling serving to translate the axial movement of said piston into relative rotational movement of said camshaft.
The piston and cylinder may be, housed within a camshaft pulley at the front end of the camshaft. In one embodiment, the cylinder is defined, at its front end, by a front plate having an annular flange extending towards the camshaft; and at its rear end by the front face of a housing within which said mechanical coupling is housed.
Advantageously, the mechanical coupling between the piston and the camshaft comprises a spline mechanism acting between said piston and the front end of said camshaft. Such a spline mechanism may be mounted within a housing, the front end surface of said housing forming the rear wall of said cylinder, as indicated above.
It will be appreciated that the configuration described is such that axial displacement of said piston causes a corresponding degree of rotational advancement of the camshaft when the axial movement is in one direction and a limited degree of rotational retardation of the camshaft when the axial movement is in the opposite direction.
Preferably, a first channel is provided to deliver hydraulic fluid to the interior of said cylinder directly behind said front plate, and a second channel is provided to deliver hydraulic fluid to said cylinder directly in front of the housing for said mechanical coupling.
In certain currently preferred embodiments of the invention, the piston is arranged so that its own axial displacement results additionally in axial displacement of the camshaft.
In a valve control mechanism in accordance with the invention, each cam generally has associated therewith a cam follower. Preferably, each cam follower comprises a body which reciprocates within a slideway and at one extremity acts upon the end of a valve stem, the cam follower having at its opposite extremity a trough of curved cross-section which receives a member in the form of a segment having on one side thereof a surface curved correspondingly to that of said trough, and having on the other side thereof a planar surface, whereby the curved surface of the segment enables said member to turn with respect to said body, while the planar surface of the member cooperates with the cam surface.
Preferably, the cam followers are disposed relative to the valve stems such that the One of action between the each cam follower and the end of its respective valve stem is located away from the mid-point (measured in a direction parallel to the axis of the camshaft) of a section through the cam fallower in a plane which contains the axis of the camshaft and the axis of the valve stem. A particularly preferred arrangement is where said end of the valve stem is partly recessed within the body of the cam follower.
In this first aspect of the invention, and in other aspects also, the hydraulic control of the piston action is preferably under microprocessor control.
According to a second aspect of the present invention, there is provided, in or for use in an internal combustion engine, a valve control mechanism which comprises: a camshaft carrying a plurality of cams, the camshaft being mounted in a cylinder head or cam carrier and being arranged for a limited degree of axial movement and having associated with it means for effecting such movement, each of the cam surfaces having an outline in section taken through a plane containing the axis of the camshaft which is not parallel to that axis, whereby in use the valve action is a function of the axial location of the camshaft within the range of permitted axial movement; and a cam follower for each cam, the cam follower comprising a body which reciprocates within a slideway and at one extremity acts upon the end of a valve stem, the cam follower having at its opposite extremity a trough of part-circular cross-section which receives a member in the form of a segment of a circular cylinder, the curved surface of which faces the interior surface of the trough, so that said member can turn with respect to said body; while a planar side surface of the member faces the cam surface,
In this second aspect, the valve control mechanism may further comprise means for relatively advancing and retarding the rotation of the camshaft.
In one embodiment of this second aspect of the invention, control of the axial displacement of the camshaft acts also to control the relative rotational adjustment of the camshaft. This provides good control of valve action and can be implemented relatively easily. In an alternative embodiment, control of the axial displacement of the camshaft acts independently of the relative rotational adjustment of the camshaft. This permits greater freedom to influence valve action, but requires more control functions within or associated with the engine.
Advantageously, the means for effecting the limited degree of axial displacement of the camshaft comprises a piston housed within a cylinder, the axial position of the piston being under hydraulic control. Such hydraulic control of said piston is preferably governed by a microprocessor. This may be achieved, for example, by use of oil supplied by a proportional programmable valve such as “Moog” valve under microprocessor control.
In one implementation of this aspect of the invention, the piston can advantageously act on the camshaft to effect axial displacement thereof through a spline mounted within a housing, the arrangement being such that axial displacement of the piston causes one or both of: (a) a corresponding degree of axial displacement of the spline and of the camshaft; and (b) a limited degree of rotational advancement of the camshaft when the axial movement is in one direction and a limited degree of rotational retardation of the camshaft when the axial movement is in the opposite direction. The spline may for example be a straight spline or a ball spline.
In order to reduce the bulk of an engine incorporating a valve control mechanism of this inventi

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Valve control mechanism does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Valve control mechanism, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Valve control mechanism will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2973101

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.