Valve

Automatic temperature and humidity regulation – Traps – Thermostatic

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C236S09300A

Reexamination Certificate

active

06616058

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to flow control valves, and more particularly to a flow control valve which can be used to regulate or stop the flow of steam or other high temperature fluid. The invention has broad application in fluid flow control, but is particularly useful as a thermally responsive fluid valve, and has particular utility in the elimination of condensate from the steam system in an apparatus such as a steam turbine, a steam engine, a steam heating system for a building, a steam autoclave, a steam-operated humidifier, steam-operated chemical processing equipment, and other equipment utilizing steam as a source of heat, pressure or humidity.
BACKGROUND OF THE INVENTION
To achieve optimum operating efficiency in such equipment, it is desirable to eliminate condensate to the extent possible. In order to do this automatically, various devices known as steam traps have been devised. In general, a thermostatic steam trap, which is situated at a suitable location in a steam line, detects the presence of condensate by sensing the temperature of the condensate, which is lower than that of steam. When condensate is detected, an aperture in the steam trap opens to discharge the condensate. The discharged condensate is replaced by steam, which, by virtue of its higher temperature, causes the aperture to reclose. As a result, the steam trap discharges condensate automatically without allowing significant amounts of steam to escape.
Most thermostatic steam traps currently in use are either bimetallic disc steam traps or bellows-type steam traps. As the name implies, the first type of steam trap utilizes a bimetallic disc as a temperature sensing element. A stack of bimetallic discs is disposed inside a housing having an inlet connected to a steam system, and a valve is arranged to exhaust fluid from the steam system as the fluid flows through the housing past the stack of bimetallic discs. The stack mechanically moves a valve element toward and away from a valve seat, depending on the temperature of the fluid inside the housing. The bellows type steam trap utilizes a fluid-filled bellows, instead of a stack of bimetallic discs, as a temperature sensing element.
In both cases, when the temperature sensing element is exposed to steam, the temperature of the steam causes the valve element to move, in the closing direction, into contact with the valve seat, while the lower temperature of condensate accumulating in the sensor housing causes the valve to move away from the seat in order to discharge the condensate, until the condensate is exhausted and the sensor is once again exposed to steam, whereupon the sensor once again causes the valve element to close.
The temperature of saturated steam increases with increasing pressure according to a well-defined relationship known as the steam curve. Likewise, the temperature of the condensate in a closed system increases with increasing steam pressure. Accordingly, in an ideal steam trap, the temperature at which the steam trap discharges condensate should be higher when the steam pressure is high, and lower when the steam pressure is lower. In a conventional steam trap utilizing a stack of bimetallic discs as the temperature sensor, a higher steam temperature causes the sensor to exert a greater closing force on the valve element, while at the same time, the higher pressure exerts a force on the valve element tending to move the valve element in the opening direction. Therefore, in a well-designed bimetallic disc steam trap, a balance is achieved, by which the device follows the steam curve, discharging condensate as it accumulates, regardless of the steam pressure in the system.
A thermostatic bellows steam trap functions in a similar manner. The fluid within the bellows expands with increasing temperature, urging the valve element in the closing direction, while increasing pressure acts to compress the bellows. The oppositely acting effects of temperature and pressure, when appropriately balanced, cause the device to discharge condensate at a temperature near the saturated steam temperature at any pressure.
These conventional steam traps have various limitations and disadvantages, including high manufacturing cost, large size, difficulty of adjustment, and limited service life.
SUMMARY OF THE INVENTION
An object of this invention is to provide a simple and effective steam trap that exhibits one or more of the following advantages over conventional steam traps: lower cost, compactness, ease of adjustment, and long service life.
It is also an object of the invention to provide a simple and effective temperature-responsive fluid valve for use in a broad range of applications using steam and other fluids.
Still another object of the invention is to provide a simple and effective fluid control valve for use in various fluid flow control applications in which temperature responsiveness is not required.
The valve in accordance with the invention comprises a housing having a tubular side wall and two end walls. A first end wall at a first end of the side wall, defines one end of an internal space. A second end wall at the opposite or second end of the side wall, has a centrally located aperture arranged to provide fluid communication between the internal space and the exterior of the housing. At least one passage extends through the side wall at a location adjacent the second end wall, and is arranged to provide fluid communication between the exterior of the housing and the internal space. Preferably a plurality of such passages is provided. A valve element substantially fills all of the internal space except for a portion thereof adjacent the second end of the side wall. At least the part of the valve element which contacts the tubular side wall of the housing is composed of an elastomer. In some applications, the entire valve element can be composed of elastomer. In others an expansible wax can be incorporated in a space inside the elastomer. In still others, a rigid element can be embedded in the elastomer at a location such that the rigid element, rather than the elastomer, engages a valve seat.
The valve seat is in the form of a boss surrounding the centrally located aperture of the second end wall and extending toward the first end wall. By virtue of its elastomeric content, the valve element is deformable from a first condition in which it is spaced from the seat and allows fluid communication between the one or more passages in the side wall and the aperture in the second end wall, to a second condition in which it engages the seat, thereby closing the aperture and preventing fluid communication between the passages in the side wall and the aperture.
The temperature coefficient of expansion of the elastomer is preferably in the range from 0.01%/° F. to 0.2%/° F., and in a preferred embodiment of the invention, the valve element is composed of a plurality of cylinders disposed in a stack in the housing, in coaxial relationship with the tubular side wall of the housing. The use of a plurality of cylinders simplifies molding of the elastomer, and also makes it possible to vary the characteristics of the valve member by combining different cylinders. Thus, one cylinder might incorporate a thermally expansible wax or other composition, or a rigid, seat-engaging element, while the other is formed entirely of elastomer. In other cases, both cylinders can be composed entirely of elastomer
The side wall is preferably formed of metal, and the elastomer is in contact with the side wall, so that heat is rapidly conducted through the side wall to and from the elastomer.
In a preferred embodiment, the first end wall comprises a metal plate secured to the side wall and in contact with the elastomeric member. The operating temperature of the valve can be set by preliminarily bending the metal plate into a dish shape, so that it has a convex face in contact with the valve member. The extent to which the plate is bent determines the temperature at which the valve closes at a given pressure. A similar adjustment can be effected by ot

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Valve does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Valve, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Valve will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3064797

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.