Validating and parsing engine for system configuration and...

Electrical computers and digital processing systems: multicomput – Computer conferencing – Demand based messaging

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C709S241000, C717S152000, C717S152000

Reexamination Certificate

active

06286035

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates generally to methods for configuring, supporting and controlling network elements. More particularly, the invention is directed to methods for parsing and validating command and configuration messages that control network elements.
2. Description of the Prior Art
In real-time, embedded software applications such as telephony and data access products, system software must respond to command requests or messages from a number of different external interfaces. These commands are typically used for provisioning and system configuration, fault management, security management, performance management and other system functionality. Both the set of messages and their parameters can vary with either the system software implementation, or the version of the software that is being used, or both. One well known language or set of instructions which has been developed and used in the past to manage network elements is the Transaction Language 1 (“TL1”), which is currently the dominant management protocol for controlling telecommunications networks in North America. Typically, a TL1 engine starts a data receiving, session, sometimes referred to as a Craftperson session, using a Craft Interface Terminal (“CIT”). The CIT is essentially a “dumb” terminal which passes a TL1 ASCII string that is a single, or set of, TL1 command(s) to external interfaces at the network elements. When the network or external element sends a response back through the command router, the TL1 engine will format the output message according to TL1 syntax and send the formatted string to the CIT terminal which initiated the original request. The TL1 instruction set has become so ubiquitous in current operations support systems which manage network elements that several companies have devoted all or part of their web sites to TL1 to better serve the public. One such company is Lumos Technologies, Inc. of Santa Monica, Calif. whose web site is currently accessible at www.lumos.com.
To accommodate differences in implementation and software versions, as well as the large variety of network elements that now exist, current TL1 engines use supplemental software created by an applications generator that interacts with a Craftperson to format TL1 CIT commands and to initiate execution of the formatted commands through the command router. This procedure has been dubbed “parsing and validation”. As used herein the term “parsing” means splitting a message string up into its constituent parts, for example the message name, and one or more optional or required parameters defining message fields. Also as used herein, the term “validation” means checking a message and its contents to ensure that the message and its constituent parts are valid for a given message set.
A well-known applications generator for generating the software to perform parsing and validation, especially for TL1 strings, is the Dialog Code Generation System (“DCGS”). DCGS, as well as most other applications generators, translates templates (which are usually handwritten commands) to C language. The templates are essentially commands which are requested by the network elements and used in a data transfer session to manage the particular network. Thus, every time that a new network element is added or new commands are to be implemented, a new template must be generated and potentially new TL1 code must be written to make the TL1 engine aware of the new commands and their parameters. This existing approach to parsing and validation of messages is computationally dense, and requires a great deal of time for the man/machine interface to work out and debug the new commands. Parsing and validation of messages according to this method also runs the risk of allowing invalid validation functions to be created since it relies on human interactions, which are prone to error, with the system. Therefore, existing parsing and validation techniques for real-time embedded software applications do not provide efficient and accurate results for networked systems with embedded software.
There accordingly exists a long-felt but unfulfilled need in the art for a message parsing and validation engine which is versatile and easily expandable for use in an operations support system that manages a network. Furthermore, as existing networks which utilize real-time, embedded software expand and become more complicated, the need becomes acute for a messaging system that can automatically parse and validate new management commands and protocols to implement additional network resources such as new elements and/or functionality. It would be beneficial if the performance of these tasks was carried out in an efficient and timely way, and in a manner which does not monopolize system resources. Such features, benefits and advantages have not heretofore been achieved with prior parsing and validation schemes.
SUMMARY OF THE INVENTION
The aforementioned long-felt but unresolved needs are fulfilled, and problems solved, by methods in accordance with the present invention for configuring and supporting command messages that are generated and implemented in a system that responds to command requests from a plurality of network elements. In a preferred embodiment, the inventive method includes the step of receiving a potentially valid command message from a network element in response to a command request and storing the potentially valid command message. The system parses and validates the command message to determine whether the command message is valid. Parsing and validation take place by accessing tables which contain all relevant information about the allowed parameters for command messages and if the command message is determined to comprise valid parameters, a data structure is populated with the valid parameters. New command messages can thus be constructed without the need to write separate code-based validation software, and standard, known commands can be processed quickly and efficiently.
The methods of configuring and supporting command messages in accordance with the present invention are versatile and flexible. The software which implements these methods is reusable across multiple system software releases without changes to the application programming interface (API) of the system for different networks. The software that implements these methods can support any number of command messages and is command message independent. Furthermore, the software can be updated on the fly without having to recompile the software or reset the system which utilizes it. The methods of validating and parsing command messages disclosed and claimed herein can support multiple languages and, indeed, can operate in more than one language at a time. Thus, for example, if one network element is operating in German and another operates in English, the validation database can concurrently support both languages and simultaneously confirm the validity of command messages for both network elements. This advantageous aspect of the invention is achieved by adding the appropriate fields to the validation tables in the database for each desired language. These abilities and functionality have not heretofore been achieved in the art.
These and other features of the present invention will become apparent from the following detailed description considered in conjunction with the accompanying drawings. It is to be understood, however, that the drawings are designed solely for purposes of illustration and not as a definition of the invention, for which reference should be made to the appended claims.


REFERENCES:
patent: 5655081 (1997-08-01), Bonnell et al.
patent: 5734903 (1998-03-01), Saulpaugh et al.
patent: 5799151 (1998-08-01), Hoffer
patent: 6038590 (2000-03-01), Gish
patent: 6078733 (2000-06-01), Osborne

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Validating and parsing engine for system configuration and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Validating and parsing engine for system configuration and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Validating and parsing engine for system configuration and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2441867

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.