Abrading – Frame or mount – Portable abrader
Reexamination Certificate
2002-12-11
2004-03-30
Morgan, Eileen P. (Department: 3723)
Abrading
Frame or mount
Portable abrader
C451S456000
Reexamination Certificate
active
06712680
ABSTRACT:
BACKGROUND AND BRIEF SUMMARY OF INVENTION
The invention relates generally to abrading tools, specifically, tools wherein a sanding pad is mounted on an extension handle and incorporating a means for vacuum assisted removal of abraded particulate. In particular, the present invention includes a sanding pad which provides laminar flow by supporting a sanding screen with a plurality of pegs, and thereby avoids the use of a plenum chamber supporting the sanding screen with flow restrictive members. The present invention provides an actuated or floating hose junction which allows the sanding pad greater freedom to rotate while keeping the sanding screen fully in contact with the surface being sanded.
The design of an efficient, effective vacuum pole sander requires consideration of several factors. The angle, between the sanding surface and the extension handle, is continuously adjustable through a sufficient range to enable the operator to sand a wide area of the work surface without changing locations. A symmetrical continuous air flow over the surface of the sanding pad is required to comprehensively draw the abraded particulate into the air stream. Additionally, an unobstructed, unconstricted passageway is required to transport the particulate toward the vacuum source.
The methods and means the prior art has used to address these factors are varied. Previous designs of vacuum pole sanders have engineered structure in attempts to solve flow dynamic inefficiencies. In many instances, the additional structure has restricted the range of motion of the sanding pad assembly, increased the air flow inefficiencies and reduced the durability of the design. Vacuum pole sanders, such as Reiter U.S. Pat. Nos. 4,964,243 and 4,779,385, which have incorporated plenum chambers, obstructions, or constrictions, that increased turbulence and reduced the efficiency of the air stream, are typical of the prior art.
Examples of vacuum pole sanders with a single vacuum hose attached between the sanding pad assembly and the tubular handle are of two basic types.
The first type is exemplified by Walters U.S. Pat. No. 5,036,627, Mehrer U.S. Pat. No. 4,062,152, and Brown U.S. Pat. No. 5,624,305; each of which encloses the universal swivel in an elastomeric boot and draws the particulate-laden air stream around the swivel. The abrasive nature of the particulate causes premature wear of the universal swivel. The unnecessary obstruction contributes to turbulence, reducing the efficiency of the air stream.
The second type, exemplified by Sanchez et al U.S. Pat. No. 5,193,313, disposes the vacuum hose along the linear axis of the base plate, a predetermined distance from the universal swivel. The vacuum hose enters the tubular handle laterally, bypassing the universal swivel. This type inherently has an asymmetrical air flow pattern across the planar surface of the sanding pad, and an asymmetrical range of motion of the sanding screen in relation to the tubular handle.
Some previous examples of vacuum pole sanders have dual vacuum hoses to improve the symmetry of the air flow across the sanding pad (see Paterson U.S. Pat. No. 5,007,206 and Thayer U.S. Pat. No. 5,540,616). The vacuum hoses are attached a predetermined distance from the end of the tubular handle, and disposed diametrically. When a short side of the rectangular sanding pad assembly is moved toward the tubular handle, the vacuum hose is compressed between the tubular handle and the sanding pad assembly. This restricts the range of motion of the sanding pad assembly.
Prior examples have not achieved laminar flow of the air stream through the tool. All have incorporated plenum chambers, with a plurality of apertures in fluid communication with the planar surface of the sanding pad, in an effort to improve the flow pattern. For example, the Reiter U.S. Pat. No. 4,964,243 requires the use of peripheral supports 24, which restrict incoming air flow and cause turbulence. According to fundamental fluid dynamic principals involving fluid moving through a pipe; as velocity increases, turbulence increases. A fluid in motion loses more energy to the effects of friction in turbulent flow than in laminar flow. The present invention achieves laminar flow through the sanding head by supporting the sanding screen without the use of flow restricting supports.
Chambers, obstructions, and constrictions disrupt the parallel streamlines of laminar flow and generate turbulence in the air stream. The path of each particle becomes unpredictable, energy is lost to heat as the particles increasingly collide with each other, the walls of the passageway, and any obstructions in the air stream.
When an air stream is moving through a pipe, a localized area of reduced vacuum is created in a chamber, in relation to the air stream, by limiting the area of the inlet apertures to less than that of the area of the outlet portal(s). The effect of the air stream moving through constricting apertures is to locally accelerate the air stream (velocity is inversely proportional to cross-sectional area), creating localized turbulence. Plenum chambers, obstructions, and constrictions reduce the efficiency of the air stream by disrupting the streamlines of laminar flow and generating turbulence. As the velocity increases, turbulence increases, reducing the efficiency of the system. Obstructions reduce efficiency by physically disrupting the streamlines and creating turbulence as the air stream is forced around the obstructions.
Various methods and means used in the prior art to improve the flow dynamics have restricted the articulation of the sanding pad assembly, reduced the efficiency of the air stream, added manufacturing costs, and reduced the structural integrity and durability of the devices. The applicant believes that inefficiencies in design of the prior art have undermined the confidence of manufacturers and consumers, and is a factor why a tool with such significant benefits is not in common use by professional tradespeople.
During the sanding process of finishing drywall, the operator is often required to sand in hallways, closets, and under stairways. The range of motion between the sanding pad and the handle of the sanding pole must be comprehensive enough to allow the operator to maintain planar contact between the sanding screen and the work surface while working in confined areas.
The present invention provides an actuated, bifurcated vacuum hose junction for a vacuum pole sander. The pole sander includes a sanding pad assembly, a bifurcated hose junction assembly, and a tubular handle assembly. The hose junction is actuated by the movement of the sanding pad in relation to the tubular handle. The hose junction is designed to “float” and is displaced when the sanding pad is moved toward the handle, allowing the operator to close the angle between the pad and the handle, and maintain contact between the sanding screen and the work surface when working in confined areas.
The sanding pole of the application achieves laminar flow through the sanding head by providing an unobstructed passageway for the air stream. The passageways extend between upstanding support pegs that carry the sanding screen. This design reduces turbulence, conserving the energy available to the system, and maintaining the efficiency of the air stream to transport the abraded particulate to the vacuum source. The operator is free to urge the sanding screen along the work surface, at pace appropriate to the time constraints of the job, without loss of effective particulate removal.
Generally, it is applicant's objective to provide drywall professionals a vacuum pole sander designed well enough to come into common use, by intuitively instilling confidence in the tool's functionality and durability. The sander of the present invention is physically robust enough to provide years of regular professional service. It collects more dust, providing a healthier environment and an advantage over competitors' sanding equipment.
Specifically, it is applicant's objective to provide a pole-mounted va
Johnsonbaugh Bruce H.
Morgan Eileen P.
Peletex, Inc.
LandOfFree
Vacuum sanding pole with actuated hose junction does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Vacuum sanding pole with actuated hose junction, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Vacuum sanding pole with actuated hose junction will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3283917