Vacuum processing apparatus and a vacuum processing system

Material or article handling – Apparatus for moving material between zones having different...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C414S935000, C414S939000

Reexamination Certificate

active

06537012

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to vacuum processing apparatuses, and, more particularly, to a vacuum processing apparatus suitable for providing samples, namely, silicon substrates and the like, with single-wafer processing, such as etching, CVD (chemical vapor deposition), spattering, ashing, or rinsing, and to semiconductor manufacturing equipment using such a vacuum processing apparatus.
Vacuum processing apparatuses for processing samples can be broadly divided into a cassette block type and a vacuum processing block type. The cassette block type has its front extending longitudinally with respect to the bay passageway of semiconductor manufacturing equipment and includes cassette-and-sample orientation alignment units and atmospheric robots; whereas, the vacuum processing block type has a loading lock chamber, an unloading lock chamber, vacuum processing chambers, vacuum post-processing chambers, vacuum pumps, vacuum robots, and the like.
According to the abovementioned equipment, for a corresponding vacuum processing apparatus, the samples within a cassette are each carried from the cassette block to the loading lock chamber of the vacuum processing block by an atmospheric robot. The sample is further transferred from the loading lock chamber to a processing chamber by a vacuum robot, and then, after being set on an electrode structure, the sample undergoes plasma etching or other similar processing. The sample, after being processed, is transported to and further processed in a vacuum post-processing chamber, as required.
Examples of vacuum processing apparatuses for etching samples with plasma are disclosed in, for example, Patent Disclosure Collection 1986—official Gazette Issue No. 8153, Patent Disclosure Collection 1988—Official Gazette Issue No. 133532, Patent Disclosure Collection 1994—Official Gazette Issue No. 30369, Patent Disclosure Collection 1994—Official Gazette Issue No. 314729, Patent Disclosure Collection 1994—Official Gazette Issue No. 314730, and U.S. Pat. Nos. 5,314,509 and 5,784,799.
Vacuum processing apparatus based on the above-identified prior art has a concentric or rectangular arrangement of processing chambers and loading/unloading lock chambers. For example, the apparatus set forth in U.S. Pat. No. 5,314,509 has a vacuum robot located near the center of the vacuum processing block, with three processing chambers concentrically arranged around the robot and a loading lock chamber and an unloading lock chamber provided between the robot and the cassette block. Such apparatus has the problem that the transport arms of the atmospheric robot and vacuum robot have too wide a rotational angle range, and, thus, that the entire apparatus requires a large floor space.
At the same time, the processing chambers, vacuum pumps, and other piped/tubed units within the vacuum processing block of the vacuum processing apparatus require periodic and non-periodic maintenance, such as checking and repairing. Accordingly, around the vacuum processing block there are usually provided access doors to enable the maintenance of the loading lock chamber, unloading lock chamber, processing chambers, vacuum robots, and various piped/tubed units.
Conventional vacuum processing apparatus can handle samples up to 8 inches (about 200 mm) in diameter and not more than about 250 mm in cassette width “Cw”. Even this cassette dimension, however, has the problem that a large floor space is required. In addition, to allow for handling larger samples, such as 12 inches (about 300 mm) in diameter “d”, since carrier pods are required, the cassette width “Cw” must be increased to about 350 mm and the cassette block for storing multiple carrier pods must also be increased in width. If the width of the vacuum processing block is to be determined according to such width of the cassette block, the entire vacuum processing apparatus will require a larger floor space. For example, in the case of a cassette block capable of accommodating four carrier pods, if the diameter “d” of the samples is increased from the conventional 8 inches to 12 inches, cassettes will absolutely need to be at least about 40 cm wide.
For general semiconductor manufacturing equipment, to ensure that a large number of samples undergo various types of processing at the same time, multiple sets of a vacuum processing apparatus which carry out the same type of processing are located at one bay and samples are carried between bays automatically or manually. Since such manufacturing equipment requires a high degree of cleanliness, the entire equipment is installed in a large cleanroom. Increases in the dimensions of a vacuum processing apparatus, associated with increases in sample diameter, result in an increased cleanroom-occupied floor area, which in turn leads to further increased construction costs for a cleanroom, which is already high in construction costs. If multiple sets of a vacuum processing apparatus occupying a large floor area are to be installed in cleanrooms of the same area, the number of vacuum processing apparatus sets or the spacing between each set of the vacuum processing apparatus must be reduced. Reduction in the number of vacuum processing apparatus sets installed in cleanrooms of the same area will necessarily reduce the productivity of the semiconductor manufacturing equipment and thus increase semiconductor manufacturing costs. Reduction in the spacing between each set of the vacuum processing apparatus results in shortage of the maintenance space required for check and repair services, thereby deteriorating the maintainability of the vacuum processing apparatus significantly.
SUMMARY OF THE INVENTION
One object of the present invention is to provide a vacuum processing apparatus that can minimize its manufacturing costs while at the same time providing flexibility to increases in sample diameter.
Another object of the present invention is to provide a vacuum processing apparatus which is excellent in maintainability and is flexible to increases in sample diameter.
Still another object of the present invention is to provide a vacuum processing apparatus, such as semiconductor manufacturing equipment, that can minimize its manufacturing costs while at the same time provide flexibility to increases in sample diameter and ensure a complement of vacuum processing apparatuses, and which does not deteriorate maintainability.
The present invention is directed to a vacuum processing apparatus having an atmospheric loader equipped with a plurality of cassette tables arranged close to each other, and with a transport unit for carrying wafers from or to the cassette tables, a vacuum loader equipped with vacuum wafer-processing chambers and with a vacuum transport chamber in communication with the processing chambers via gate valves, and a locking unit that includes loading and unloading lock chambers equipped with gate valves for connecting the foregoing atmospheric transport unit and vacuum transport chamber;
wherein two vacuum wafer-processing chambers, both formed by a magnetized UHF-band electromagnetic wave radiation/discharge reactor (hereinafter, referred to as the UHF-ECR reactor), have side wall inner units and antennas so mounted as to permit disassembly, and they are arranged symmetrically with respect to an axial line passing through the middle of the vacuum transport chamber and locking unit, only at the opposite side of the locking unit across the vacuum transport chamber, and in such a manner that the vacuum processing chambers form an acute angle with respect to the vacuum transport chamber.
The present invention is directed to a vacuum processing apparatus having an atmospheric loader equipped with a plurality of cassette tables arranged close to each other, and with a transport unit for carrying wafers from or to the cassette tables, a vacuum loader equipped with vacuum wafer-processing chambers and with a vacuum transport chamber in communication with the processing chambers via gate valves, and a locking unit that includes loading and unloading lock chambers

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Vacuum processing apparatus and a vacuum processing system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Vacuum processing apparatus and a vacuum processing system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Vacuum processing apparatus and a vacuum processing system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3051092

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.