Vacuum nozzle assembly and system

Brushing – scrubbing – and general cleaning – Machines – With air blast or suction

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C015S304000

Reexamination Certificate

active

06813810

ABSTRACT:

THE FIELD OF THE INVENTION
This invention is in the field of devices for cleaning enclosed spaces such as ducts, pipes, and chimneys.
BACKGROUND
The cleaning of enclosed spaces within homes and in industrial settings has been an important service for many years. The cleaning of pipes, ducts and chimneys has created an industry of chimney sweeps, duct cleaners, and pipe cleaners who employ brushes attached to elongate structures that are extended along the lengths of these enclosed spaces to thereby clean the inner surfaces of the spaces.
Ducts within a home or other setting typically receive air from a forced air source. The forced air is often filtered, but can nevertheless contain contaminants that are blown into the ventilation ducts. Thus, these ducts require regular cleaning.
Furthermore, the outlets of such ducts that are located within various rooms often allow particles to be inserted within and remain within the duct system. Although outlets typically have some type of vent cover, such vent covers can, nevertheless, allow particles such as: (i) hair follicles, (ii) skin particles, (iii) dust particles, and (iv) small objects (e.g., insects) to infiltrate the duct system.
Once such particles are lodged into a duct system, it is possible for the particles to be forced back from the duct system into the living space of a home, office, or building when the ventilation system is actuated.
A variety of different cleaning systems have been employed to clean such enclosed spaces. For example, one typical system employs a vacuum hose communicating with a vacuum source. At one end of the vacuum hose is a nozzle having a rotating brush thereon. Extending through the vacuum hose is a flexible metal shaft that rotates the brush. A motor turns the metal shaft. When the motor and vacuum source are actuated, the brush turns and dust and other particles are suctioned through the nozzle into the vacuum hose. The turning of the brush dislodges particles from within an enclosed space, while the suctioning of the hose removes the particles from the space.
Such typical designed systems have various drawbacks. For example, the flexible metal shaft typically rotates within a plastic vacuum hose. As the vacuum hose is inserted within an enclosed space, the metal shaft can contact the hose while the shaft is rotating. In addition, the force created by the motor to drive the shaft is required to extend along the length of the vacuum hose to the rotating brush, stressing the drive motor. The flexible metal shaft can also add weight and inflexibility to the hose.
Furthermore, the rotating shaft can typically be viewed through holes in the nozzle. The nozzle holes are designed to allow particles through the holes and into the vacuum hose. However, it is possible that hair, string, fingers, or other objects can be fed within the holes and contacted by high speed rotating shaft. A typical version of such a rotating shaft and nozzle combination features longitudinal safety bars extending across the holes, but a small finger or hair can nevertheless be extended through the holes past the bars and contact the rotating shaft, possibly winding around the rotating shaft.
Another problem within the art is that vacuum assemblies employed for pipe and duct cleaning tend to be large and bulky, requiring that a bulky vacuum source be brought within an individual's home or other building and dragged behind a vacuum hose in order to perform the desired cleaning.
What is therefore needed is an improved device for cleaning within an enclosed space, such as a duct, pipe or chimney.
BRIEF SUMMARY OF THE INVENTION
A vacuum system of the present invention comprises a vacuum source and a motorized vacuum nozzle assembly communicating with the vacuum source. The nozzle assembly can communicate directly through a hose with the vacuum source or communicate with the vacuum source through the use of a portable transfer station communicating with the vacuum source.
The vacuum nozzle assembly is configured to be placed within an enclosed space such as a duct, pipe, or chimney and to brush particles within the enclosed space and allow the particles to be suctioned through the vacuum nozzle assembly and into the transfer station or directly to the vacuum source. A duct or other space to be cleaned may be rectangular, circular, flexible, irregular shaped and/or insulated, for example.
The transfer station has ports therein which allow the particles to be suctioned from the vacuum nozzle assembly, through the transfer station and into the vacuum source. The vacuum source may be located within a separate component from the transfer station such as within a vehicle parked outside of the home or building that is being cleaned. Optionally, however, the vacuum source may be located within the transfer station. In another embodiment, the nozzle assembly communicates through a hose with a vacuum source located within a vehicle, such as a truck or van parked outside the home or other building.
The vacuum nozzle assembly comprises a hollow vacuum nozzle having a proximal end, a distal end, and a cylindrical wall extending between the proximal and distal ends. At least one opening extends through the wall to allow particles to be suctioned through the wall and into the vacuum source. Preferably, a plurality (e.g., 3) of openings extend through the wall.
A motor assembly is coupled to the distal end of the nozzle and a cleaning brush is moved (e.g., rotated) by the motor assembly. Thus, upon actuation of the motor assembly and the vacuum source, particles contacted by the cleaning brush are suctioned through at least one opening of the nozzle, through a vacuum hose and through the transfer station or directly through a hose to the vacuum source.
In one embodiment, the cylindrical wall of the nozzle has an inner annular wall extending inwardly therefrom that substantially encapsulates the proximal end of the motor. The inner wall may extend integrally from the cylindrical wall, for example. In one embodiment, the cylindrical nozzle wall and/or inner annular wall comprise a plastic material.
As a major advantage of the present invention, since the vacuum source may be located in a vehicle such as a van or truck outside the home or building being cleaned, the nozzle assembly can be readily moved throughout the home of an individual, optionally employing a transfer station. This is an improvement over previous designs in which a large vacuum assembly is required to be moved within an individual's home or building.
As another major advantage of the invented system, the motorized vacuum nozzle assembly can readily move around corners within enclosed spaces and does not risk damaging the vacuum hose by a rotating shaft because there is no rotating shaft in the hose. Since the motor assembly is coupled to the nozzle, the motor assembly and cleaning member can be readily directed by directing the nozzle assembly left or right. Furthermore, the present design prevents particles from being lodged in between the nozzle opening(s) and the drive shaft, making the design safer.
Another advantage is the use of large holes, e.g., wide, laterally oriented holes that enable larger particulate to be suctioned through the nozzle. This is permissible in part because there is no rotating shaft extending along the nozzle and hose. In one embodiment, the width of the holes is substantially greater than the length of the holes. In this embodiment, the amount of hole space can be maxmized while still minimizing the length of the nozzle, thereby increasing the ability of the nozzle assembly to turn comers within enclosed spaces, such as ducts.
In one embodiment, the motor assembly is bi-directional, such that the drive shaft of the motor assembly (and consequently the cleaning member coupled thereto) can rotate left or right. This has many advantages, such as enabling the user to direct the cleaning member to take a right turn or left turn within a duct system, and/or to clean the right or left side of a duct.
Furthermore, according to one cleaning method,

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Vacuum nozzle assembly and system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Vacuum nozzle assembly and system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Vacuum nozzle assembly and system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3350885

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.