Vacuum leak verification system and method

Internal-combustion engines – Charge forming device – Having fuel vapor recovery and storage system

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C123S519000

Reexamination Certificate

active

06363921

ABSTRACT:

FIELD OF THE INVENTION
This invention relates generally to on-board systems and methods for detecting fuel vapor leakage from an evaporative emission space of an automotive vehicle fuel system, relating particularly to a leak verification system characterized by various novel aspects one of which comprises selectively communicating evaporative emission space cooperatively defined by a fuel tank and a vapor storage canister through a purge valve to an intake system of an engine in different ways provide various novel test capabilities.
BACKGROUND OF THE INVENTION
A known on-board evaporative emission control system for an automotive vehicle comprises a vapor collection canister that collects volatile fuel vapors generated in the headspace of the fuel tank by the volatilization of liquid fuel in the tank and a purge valve for periodically purging fuel vapors to the intake system of the engine. The fuel tank headspace and the vapor collection canister define most of the volume of an evaporative emission space where fuel vapors are contained so they do not escape to atmosphere. Known purge valves are sometimes referred to by various names that include canister purge solenoid (CPS) valves and proportional purge solenoid (PPS) valves. Certain purge valves are electrically controlled. Such a purge valve may comprise a solenoid actuator that is under the control of a microprocessor-based engine management system, sometimes referred to by various names, such as an engine management computer or an engine electronic control unit, to control the opening and closing of the purge valve and hence control flow from the evaporative emission space to the engine intake system.
During conditions conducive to purging, the evaporative emission space is purged to the engine intake system through the purge valve. The space is vented to atmosphere by opening the vent valve, and the purge valve is opened by a signal from the engine management computer in an amount that allows vacuum developed in the engine intake system by operation of the engine to draw fuel vapors that are present in the tank headspace and/or stored in the canister for entrainment with combustible mixture passing into the engine's combustion chamber space at a rate consistent with engine operation so as to provide both acceptable vehicle driveability and an acceptable level of tailpipe emissions.
Certain governmental regulations require that certain automotive vehicles powered by internal combustion engines which operate on volatile fuels such as gasoline, have evaporative emission control systems equipped with an on-board diagnostic capability for determining if a leak is present in the evaporative emission space. It has heretofore been proposed to make such a determination by temporarily creating a pressure condition in the evaporative emission space that is substantially different from the ambient atmospheric pressure, and then watching for a change in that substantially different pressure which is indicative of a leak.
It is believed fair to say that there are two basic types of diagnostic systems and methods for determining integrity of an evaporative emission space against leakage.
Commonly owned U.S. Pat. No. 5,146,902 “Positive Pressure Canister Purge System Integrity Confirmation” discloses one type: namely, a system and method for making a leakage determination by pressurizing the evaporative emission space to a certain positive pressure therein (the word “positive” meaning relative to ambient atmospheric pressure) and then watching for a drop in positive pressure indicative of a leak. Other positive pressure type systems are disclosed in other commonly owned patents, including U.S. Pat. Nos. 5,383,437; and 5,474,050.
The other of the two general types of systems for making a leakage determination does so by creating in the evaporative emission space a certain negative pressure (the word “negative” meaning relative to ambient atmospheric pressure so as to denote vacuum) and then watching for a loss of vacuum indicative of a leak. A known procedure employed by this latter type of system in connection with a leak test comprises utilizing engine manifold vacuum to create vacuum in the evaporative emission space. Because that space may, at certain non-test times, be vented through the canister to allow vapors to be efficiently purged when the purge valve is opened for purging fuel vapors from the tank headspace and canister, it is known to communicate the canister vent port to atmosphere through the open vent valve when vapors are being purged to the engine. The vent valve however closes preparatory to a leak test so that a desired test vacuum can be drawn in the evaporative emission space for the test. Once a desired vacuum has been drawn, the purge valve is closed, and leakage appears as a loss of vacuum during the length of the test time after the purge valve has been operated closed.
In order for an engine management computer to ascertain when a desired vacuum has been drawn so that it can command the purge valve to close, and for loss of vacuum to thereafter be detected, it is known to employ an electric sensor, or transducer, that measures negative pressure, i.e. vacuum, in the evaporative emission space by supplying a measurement signal to the engine management computer. It is known to mount a pressure sensor in various ways. One way is on the vehicle fuel tank where the sensor is exposed to the tank headspace, as in commonly owned U.S. Pat. No. 5,267,470 disclosing a pressure sensor mounting in conjunction with a fuel tank roll-over valve. Another way is described in commonly owned U.S. Pat. No. 6,050,245 disclosing a pressure sensor mounting in a vent valve. Other commonly owned patents such as U.S. Pat. Nos. 5,957,115; 5,967,124; 6,009,746; 6,016,690; 6,016,691; 6,016,793; and 6,044,314 disclose various leak detection systems some of which include modules containing both a pressure sensor and a vent valve.
SUMMARY OF THE INVENTION
One generic aspect of the present invention relates to an automotive vehicle that is powered by an internal combustion engine and comprises a tank for storing volatile fuel that is consumed by the engine and a vapor storage canister that comprises a dirty air port in communication with headspace of the tank to cooperatively define an evaporative emission space for containing vapor generated by the evaporation of liquid fuel in the tank and that comprises a vapor absorbent medium separating the dirty air port from a clean air port. A system selectively communicates the evaporative emission space to atmosphere through a vent valve and to an intake system of the engine through a purge valve to establish different flow paths for different operating modes of an evaporative emission control system, including a leak verification system, for the evaporative emission space. For a purge mode, a purge flow path extends from atmosphere through the vent valve, through the evaporative emission space, and through the purge valve to the engine intake system. For a pre-conditioning phase of a leak verification mode, a pre-conditioning flow path extends from atmosphere through the vent valve and the purge valve to the engine intake system without passing through the evaporative emission space. For a test phase of the leak verification mode, a test path extends from the evaporative emission space through the dirty air port, through the canister medium, through the clean air port, and through the purge valve to the engine intake system.
Another generic aspect of the present invention relates to a leak verification test method for an evaporative emission space of a fuel system that holds a supply of volatile fuel consumed by an internal combustion engine to power a motor vehicle and that comprises a tank or storing the fuel and a vapor storage canister which cooperates with headspace of the tank to define the evaporative emission space and which contains a vapor absorbent medium separating a clean air side from a dirty air side. The method comprises pre-conditioning a flow path that extends from atmosphere

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Vacuum leak verification system and method does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Vacuum leak verification system and method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Vacuum leak verification system and method will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2872085

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.