Vacuum arc plasma thrusters with inductive energy storage...

Electric heating – Metal heating – By arc

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C219S121520

Reexamination Certificate

active

06818853

ABSTRACT:

FIELD OF THE INVENTION
The invention pertains to the use of inductive energy storage power processing units for ignition and/or driving in conjunction with plasma sources that are especially tailored for vacuum arc plasmas used in propulsion devices. The stored inductive energy may be used to generate a plasma which may be used to propel or provide thrust control for a device in a gravitation-free environment, or in a fixed orbit about a planet in an atmospheric vacuum, such as outer space.
BACKGROUND OF THE INVENTION
Pulsed Plasma Thrusters (PPT) are used to provide periodic pulses of thrust for satellites in space. Prior art high voltage PPTs were constructed from coaxial electrodes with a PTFE propellant in a coaxial configuration such as U.S. Pat. No. 6,269,629 by Spanjers, and U.S. Pat. No. 6,295,804 by Burton et al, or in a parallel plate configuration such as U.S. Pat. No. 6,373,023 by Hoskins et al. These prior art PPTs are ignited and driven with high voltages stored in capacitors, with or without an external spark gap initiator. The energy storage of a capacitor may be expressed as (½)Cv
2
. Charging of the storage capacitors may be accomplished using high voltage supplies or by low voltage supplies followed by DC-to-DC converters which convert a low voltage into the necessary high voltage to charge the storage capacitor. The voltage stored in the capacitor results in a plasma discharge across the surface of an insulator made from a material such as PTFE (also known as Teflon®), which results in thermionic surface heating of the PTFE, and high speed discharge of the superheated PTFE particles and related plasma-PTFE byproducts. The superheated PTFE accelerates through an exit aperture, producing a reactive force for pulsed thrust control. Another prior art low voltage PPT uses a conductive propellant such as carbon whereby the ohmic heat generates a surface plasma, which releases particles of superheated carbon at high speed, as described in U.S. Pat. No. 6,153,976 by Spanjers. The previous examples of prior art used capacitors as a source of energy storage. Attempts to drive plasma sources with inductors have been made in the past but were abandoned due to the need for very high voltages to break-down the vacuum gap and the associated requirement that the electronic switch controlling the inductor must operate very fast and hold-off said high voltage. In the field of plasma assisted physical vapor deposition, a new plasma initiation method was introduced that employed surface breakdown along a metallized insulator separating anode and cathode to reduce the initiation voltage, as described in U.S. Pat. No. 6,465,793 by Anders. This reference describes a capacitive driver and a pulse-forming network which is charged up to a voltage allowing the surface breakdown to occur, typically in excess of 1000V. The storage capacitor is charged by a voltage supply providing the required 1000V. Inductive energy storage ignition has been used in the past but was not used in connection with the above mentioned low voltage initiation and therefore required the output of very high breakdown voltages, which had to be held off by some kind of switching device making this approach very complicated due to the lack of adequate compact semiconductor devices. The prior art systems using either a storage capacitor charged to a high voltage or inductive energy storage required high speed switching of large voltages, which is difficult to do without incurring switching losses, and also typically restricts or eliminates the use of semiconductor devices because of the high voltage requirements. In addition, the use of capacitors adds a significant amount of mass to the systems and limits the lifetime as high voltage capacitors have been shown to deteriorate with time.
A new class of device is known as a vacuum arc thruster (VAT), which contrasts with the prior art Pulsed Plasma Thruster (PPT) in several ways. The prior art PPT uses a surface discharge, which ablates the insulator material as a propellant, and avoids eroding the electrodes. The acceleration mechanism of the PPT is dominated by a j×B force. The vacuum arc thruster (VAT) uses the cathode material as the propellant, which forms a low impedance plasma. The acceleration mechanism is dominated by pressure gradients formed by the expanding plasma, in addition to the j×B force described earlier. The ignition mechanism is also different between a PPT and a VAT. The VAT uses a voltage breakdown across a very small gap, while the PPT uses a surface discharge, which is frequently assisted by a spark plug or even a laser. References to the present invention will refer to a vacuum arc thruster (VAT) to contrast from the prior art pulsed plasma thruster (PPT). In the present invention, the electrodes are the propellant, and the insulator is not consumed by the plasma. The voltage and current characteristics through the plasma discharge are different between the present VAT invention and the prior art PPT. After ignition, the VAT operates for the rest of the pulse at a fairly constant voltage and the current reduces, whereas the voltage and current characteristics of a PPT are the opposite.
What is desired in a VAT is a low mass, low voltage device (<1000V) which uses inductive energy storage rather than capacitive energy storage, which forms a plasma from a conductive layer of material which is formed over an insulator surface, where the conduction layer is a different or the same type of material as used in the cathode, and which provides an electrode geometry which is either parallel plate or coaxial.
OBJECTS OF THE INVENTION
A first object of the invention is a vacuum arc thruster which uses inductive energy storage to generate a plasma arc.
A second object of the invention is a vacuum arc thruster in a parallel plate configuration, whereby one of the plates is a cathode electrode, the other plate is-an anode electrode, and an insulating separator is placed between the cathode electrode and the anode electrode. The insulating separator includes a rough surface for the addition of a metallization layer in the region where a plasma may form.
A third object of the invention is a vacuum arc thruster where the metallization layer is formed from the same material used to form the cathode.
A fourth object of the invention is a pulsed plasma thruster in either a coaxial, a planar, or a ring configuration, whereby one of the electrodes is a cathode, the other electrode is an anode, and an insulating coaxial separator is placed between the cathode and the anode. The insulating separator includes a rough surface for the addition of a metallization layer.
A fifth object of the invention is a pulsed plasma thruster where the anode electrodes are chosen from one of the group of materials titanium, copper or gold, the insulators are chosen from the group of materials alumina silicate or alumina, and the cathode electrodes are chosen from one of the group of materials carbon, aluminum, titanium, chromium, iron, yttrium, molybdenum, tantalum, tungsten, lead, bismuth, or uranium.
A sixth object of the invention is a pulsed plasma thruster comprising:
a power source having an anode output and a cathode output, the power source comprising a voltage source in series with an energy storage device in series with a switch, the switch having a terminal coupled to the anode output and a terminal coupled to said cathode output;
a planar plasma thruster including an insulator having two substantially parallel surfaces, a cathode electrode placed on one of said insulator surfaces, an anode electrode placed on other said insulator surface, where the insulator has an area of preferred plasma formation between the anode electrode and the cathode electrode, the preferred plasma formation area having a film of conductive material.
A seventh object of the invention is a pulsed power thruster which uses the magnetic field energy stored in an inductor to create a magnetic field which can be used to steer the particles providing propulsion.
SUMMARY OF THE

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Vacuum arc plasma thrusters with inductive energy storage... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Vacuum arc plasma thrusters with inductive energy storage..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Vacuum arc plasma thrusters with inductive energy storage... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3324700

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.