Drug – bio-affecting and body treating compositions – Antigen – epitope – or other immunospecific immunoeffector
Reexamination Certificate
2001-11-06
2004-09-21
Minnifield, Nita (Department: 1645)
Drug, bio-affecting and body treating compositions
Antigen, epitope, or other immunospecific immunoeffector
C424S450000, C424S455000, C424S561000, C424S812000, C424S193100, C424S283100, C424S689000, C424S690000, C424S698000, C514S002600, C514S937000
Reexamination Certificate
active
06793923
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to the field of immunology, in particular, to vaccines and their preparation.
BACKGROUND OF THE INVENTION
Generally, vaccines use low doses of a specific antigen to build up resistance in a host to the effects of larger doses of the antigen or similar antigenic compounds. Antigens used in vaccines are usually parts of whole organisms or denatured toxins (toxoids) that induce the production of antibodies. Unfortunately, only some of the antibodies produced bind to the target organism or toxin because, in most cases, the antigen used in the vaccine differs structurally from the target. The limited availability of useful antigens has posed limitations to vaccine development in the past. Advances in genetic engineering have made the production of antigens by recombinant means possible. However, use of antigens produced by recombinant means often results in poor production of antibodies with poor affinity for the target native antigen for reasons given above. The effect of immunization can be enhanced when more antibodies with high affinity for their target are produced. There is a need in the art to develop vaccines that produce an enhanced immune response without increasing the amount of antigen used in the vaccine. Particularly, there is a need for single administration vaccines that eliminate or reduce the need for booster immunizations.
Many immunization strategies would benefit from such development. Vaccines that use antigens derived from mammalian, viral, bacterial, fungal or yeast sources have many uses. For example, antigens from viral, bacterial, fungal or yeast sources are useful in the prevention of disease. Antigens from mammals may be used in cancer therapy or immunocontraception. Immunocontraceptive vaccines use mammalian derived antigens that result in transient infertility or sterility of a host, particularly a mammalian host, by favouring the production of antibodies with affinity for the oocyte surface. Immunocontraceptive vaccines find use in the control of wild animal populations, including populations of feral domestic animals such as cats.
In particular, feral cat populations have been difficult to control and threaten many birds and small animals. Stray feral cats also act as vectors for human and animal diseases. Various methods including hunting, trapping and poisoning have been used in an effort to control stray cat populations but these methods have met with limited success and with public opposition. Surgical sterilization of feral cats has been increasingly used as a humane tool to lower feral cat populations during the last two decades. Acceptance of this procedure is widespread; however, disadvantages include cost, changes in behaviour and risk of infection and mortality. Despite the success of large-scale surgical sterilization, such programs are not financially or logistically feasible in many locations since capture of animals is time-consuming, difficult and stressful for the animal. Immunocontraception offers an alternate procedure with lower costs and ease of administration. However, long-term immunocontraception generally requires booster vaccinations, making it impractical for the control of wild and free-roaming species.
Vaccines generally comprise an antigen, which elicits the immune response in the host, and a variety of carriers, excipients and adjuvants useful for administering the antigen to the host.
Liposomes, which encapsulate the antigen, have increasingly been used in vaccine delivery. It has been shown that liposome delivery of denatured antigens favours the production of antibodies that recognize native epitopes (Muttilainen, S., I. Idanpaan-Heikkila, E. Wahlstrom, M. Nurminen, P. H. Makela and M. Sarvas. 1995. “The
Neisseria meningitidis
outer membrane protein P1 produced in
Bacillus subtilis
and reconstituted into phospholipid vesicles elicits antibodies to native P1 epitopes.”
Microbial Pathogen.
18:423-436). While liposomes are useful vaccine delivery vehicles, their use alone has not provided an effective single dose vaccine, particularly with respect to immunocontraceptive vaccines.
Most immunocontraceptive vaccines use Freund's Complete Adjuvant (FCA) followed by Freund's Incomplete Adjuvant (FIA) in multiple injections to aid production of sufficient antibodies to have an immunocontraceptive effect (see Ivanova, et al., 1995. “Contraceptive potential of porcine zona pellucida in cats.”
Theriogenology.
43:969-981 and Sacco et al., 1989. “Effect of varying dosage and adjuvants on antibody response in squirrel monkeys (
Saimiri sciureus
) immunized with the porcine zona pellucida Mr=55,000 glycoprotein (ZP3).” Am. J. Reprod. Immunol. 21:1-8). Other adjuvants such as Ribi™ and TiterMax™ have been used by some investigators. Alum (aluminum phosphate and/or hydroxide) has a long history of use as an adjuvant. Alum is the only adjuvant recognized as safe by the Food and Drug Administration. Many immunocontraceptive vaccines that use alum require a primary injection and several booster injections to produce sufficient antibodies for an immunocontraceptive effect (see Bagavant et al., 1994. “Antifertility effects of porcine zona pellucida-3 immunization using permissible adjuvants in female bonnet monkeys (
Macaca radiata
): reversibility, effect on follicular development and hormonal profiles.”
J. Reprod. Fertil.
102:17-25). Some studies have shown that alum is not a suitable adjuvant for zona pellucida immunocontraceptive vaccines (see Sacco et al., 1989.
Am. J. Reprod. Immunol.
21:1-8 and Bagavant et al., 1994.
J. Reprod. Fertil.
102:17-25).
Prior art has generally relied on the use of an aqueous medium or oil-in-water emulsions as carriers. For example, Muttilainen et al. (
Microbial Pathogen.
18:423-436 (1995) use an aqueous medium in combination with liposomal delivery to elicit an immune response. Popescu (U.S. Pat. No. 5,897,873 issued Apr. 27, 1999 and U.S. Pat. No. 6,090,406 issued Jul. 18, 2000), Alving (U.S. Pat. No. 6,093,406 issued Jul. 25, 2000 and U.S. Pat. No. 6,110,492 issued Aug. 29, 2000) and Muderhwa et al. (“Oil-in-water liposomal emulsions: Characterization and potential use in vaccine delivery”, (December, 1999)
J Pharm Sci.
88(12):1332-9) also use liposomal systems together with an oil-in-water carrier as the delivery system in a vaccine. Popescu uses alum with liposomes consisting of cholesterol esterified with succinate or other organic acids. U.S. Pat. No. 6,093,406 teaches the use of alum and liposomes comprising Lipid A or non-pyrogenic Lipid A in an oil-in-water emulsion to deliver a vaccine based on malarial antigens. U.S. Pat. No. 6,110,492 and Muderhwa teach the use of liposomes comprising Lipid A or non-pyrogenic Lipid A in an oil-in-water emulsion to deliver prostrate specific antigens.
Commonly owned U.S. Pat. No. 5,736,141, issued on Apr. 7, 1998, teaches a single dose immunocontraceptive vaccine for seals derived from zona pellucida antigens. While the results achieved with this vaccine are good, there is still a need for a single-dose, long lasting immunocontraceptive vaccine effective in a variety of species using adjuvants approved by the Food and Drug Administration.
There also remains a need for long lasting immunovaccines in general which are effective using a variety of antigens in a variety of species using adjuvants approved by the Food and Drug Administration.
SUMMARY OF THE INVENTION
In accordance with the invention, there is provided a composition for use as a vaccine, comprising:
(a) a carrier comprising a continuous phase of a hydrophobic substance;
(b) liposomes;
(c) an antigen; and,
(d) a suitable adjuvant.
There is further provided a method for potentiating an immune response in an animal, which method comprises administering to the animal an effective amount of a vaccine composition comprising:
(a) a carrier comprising a continuous phase of a hydrophobic substance;
(b) liposomes;
(c) an antigen; and,
(d) a suitable adjuvant.
Still further there is provided a method of preparing a vaccine
Brown Robert George
Kimmins Warwick Charles
Pohajdak William
Immunovaccine Technologies Inc.
Minnifield Nita
Welsh & Katz Ltd.
LandOfFree
Vaccines with enhanced immune response and methods for their... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Vaccines with enhanced immune response and methods for their..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Vaccines with enhanced immune response and methods for their... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3215705