Drug – bio-affecting and body treating compositions – Preparations characterized by special physical form – Liposomes
Reexamination Certificate
1998-02-13
2001-05-01
Park, Hankyel T. (Department: 1648)
Drug, bio-affecting and body treating compositions
Preparations characterized by special physical form
Liposomes
C424S184100, C424S193100
Reexamination Certificate
active
06224902
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to immunoreactive compositions and methods for immunizing or hyperimmunizing humans or animals against sterols. More particularly, the present invention relates to vaccines against cholesterol and derivatives of cholesterol, and ergosterol and derivatives of ergosterol. The present invention is useful for reducing the serum cholesterol levels of an immunized human or animal and to retard or reduce the severity of atherosclerosis or atherosclerotic plaques caused by ingestion of dietary cholesterol or by other factors. Additionally, the invention relates to immunoreactive ergosterol or ergosterol derivative compositions and methods for administering the compositions to humans and animals for immunizing or hyperimmunizing humans and animals against fungal infections. The present invention also relates to anti-ergosterol antibody-containing dairy products. Also, the present invention relates to a diagnostic assay for determining whether a human or animal has a fungal infection.
BACKGROUND OF THE INVENTION
High levels of serum cholesterol are a significant causative effect in the pathogenesis of atherosclerosis and associated diseases such as atherosclerotic coronary heart disease, atherosclerotic cerebral vascular disease, renal disease, etc. It is also believed that lowering of blood cholesterol levels is associated with amelioration of atherosclerotic vascular diseases (Goodman, D. S. et al., Report of the National Cholesterol Education Program Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults.
Arch. Intern. Med.
148:36-69, 1988; Kromhout, D. et al., Serum cholesterol and 25-year incidence of and mortality from myocardial infraction and cancer. (See The Zutphen Study.
Arch. Intern. Med.
148:1051-1055, 1988.) In 1984, a National Institutes of Health consensus development conference panel recommended a framework of detection and treatment of hypercholesterolemia. Based on this study, the National Cholesterol Education Program has made the well-known recommendation to adults: “Know your cholesterol number” (Luepker, R. V. et al., Recommendations regarding public screening for measuring blood cholesterol. Summary of a National Heart, Lung, and Blood Institute Workshop, October 1988.
Arch. Intern. Med.
149:2650-2654, 1989).
The conventional methods recommended for achieving reduced serum cholesterol levels are through reduction of dietary intake of cholesterol and other fats, and treatment of hypercholesterolemic individuals with drugs designed to lower blood cholesterol. The blood cholesterol levels are particularly associated with homeostatic mechanisms related to levels of plasma lipoproteins that serve as carriers of cholesterol. The so-called dangerous lipoproteins, from the standpoint of atherosclerotic risk, are the low density lipoproteins (“LDL”). The levels of LDL are regulated by the functional activities of LDL receptors on the surfaces of cells, particularly in the liver (see Brown, M. S. and Goldstein, J. L. A receptor-mediated pathway for cholesterol homeostasis.
Science
232:34-47, 1986). Many of the strategies for using drugs to reduce blood cholesterol involve interference with the processing of cholesterol derived from LDL (Brown and Goldstein, 1986). The extent that cholesterol can be reduced by diet is limited by numerous factors, and the reduction of cholesterol by drugs is often associated with unwanted side effects. In any case, a variety of additional variables, such as genetic background, stress, and age, can influence cholesterol levels. Additional methods for reduction of cholesterol would be expected to have beneficial health effects, particularly in individuals who receive such treatment before significant progression of atherosclerotic disease has occurred.
To our knowledge, humans have never been actively immunized against cholesterol. The safety of active immunization against cholesterol, as well as the potential consequences relating to serum cholesterol levels or progression of atherosclerosis due to intake of dietary lipids, has not been established. It has been demonstrated that human sera usually do contain varying quantities of “naturally-occurring” antibodies to cholesterol, depending on the individual serum (See Alving et al., Naturally occurring autoantibodies to cholesterol in humans.
Biochem. Soc. Trans.
17:637-639 (1989)). However, there has not been any correlation of such naturally-occurring antibodies with serum cholesterol levels or with atherosclerosis.
The possibility has been discussed that naturally-occurring antibodies to cholesterol might be a normal part of the aging process and might contribute to (rather than ameliorate) atherosclerosis (Alving, C. R. Antibodies to liposomes, phospholipids, and cholesterol: Implications for autoimmunity, atherosclerosis, and aging. In:
Horizons in Membrane Biotechnology,
Nicolau, C. and Chapman, D., editors, Wiley-Liss, pp. 40-41, 1990).
Although the inventors have not found any prior art teaching the immunization of humans with cholesterol, in the literature there has been one description of an attempt to ameliorate hypercholesterolemia and atherosclerosis in rabbits by immunological means. Bailey et al. immunized rabbits with an antigen consisting of cholesterol conjugated to bovine serum albumin (See Bailey et al., Immunization with a synthetic cholesterol-ester antigen and induced atherosclerosis in rabbits.
Nature
201:407-408 (1964)). Bailey et al. stated that the “mean antibody titer measured by an interfacial precipitation technique was 1:7000”, but there was no attempt to produce or to measure antibodies that had specificity against cholesterol. The assay antigen consisted of the original conjugate, not cholesterol either alone or as part of another conjugate. Nowhere did Bailey et al. teach that they had induced antibodies to cholesterol, and they did not teach that antibodies to cholesterol could have been produced or that such antibodies might have played a role in the lowering of serum cholesterol levels or amelioration of atherosclerosis.
Bailey et al. observed a reduced hypercholesterolemia and less aortic plaque formation in the immunized animals that were fed a cholesterol-rich diet. However, in the absence of further information the antibody titer could have been entirely directed against the bovine serum albumin component and the cholesterol-albumin conjugate might simply have lowered cholesterol through nonspecific mechanisms, such as by nonspecific adsorption of serum cholesterol by the albumin. This latter explanation could be supported by the fact that albumin has a considerable degree of hydrophobicity and can be used as a reagent to promote solubility of cholesterol in an aqueous medium such as serum. The disclosure by Bailey et al. is too insufficient to draw any immunological conclusion regarding the role, if any, that antibodies to cholesterol may have played in the experimental results. It is probably because of this that Bailey et al. did not teach any such role.
Yet another embodiment of the invention relates to prevention and treatment of fungal infections in humans and animals. Among individuals who have reduced immunological function, for example, in those who have AIDS, cancer, trauma due to accidents or surgery, debilitative metabolic illnesses such as diabetes mellitus, persons whose blood is exposed to environmental microbes such as individuals having indwelling intravenous tubes, and even in some elderly individuals, fungal infections of blood and tissues can result in serious, even life-threatening, situations. Mortality rates in cancer patients who develop systemic fungal infections is very high. In other cases, fungal or fungus-like infections, usually introduced into the lungs through the air, are commonplace among large numbers of persons due to environmental exposures. Examples of the latter types of infections include: coccidioidomycosis which is indigenous to the San Joaquin Valley in California, and areas around Flagstaff, Ariz.; histoplasmos
Alving Carl R.
Kenner Julie
Madsen John W.
Swartz, Jr. Glenn M.
Entremed, Inc.
Kilpatrick & Stockton LLP
Park Hankyel T.
LandOfFree
Vaccines against sterols does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Vaccines against sterols, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Vaccines against sterols will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2566745