Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Compositions to be polymerized by wave energy wherein said...
Reexamination Certificate
2002-09-20
2004-10-12
Cameron, Erma (Department: 1762)
Synthetic resins or natural rubbers -- part of the class 520 ser
Synthetic resins
Compositions to be polymerized by wave energy wherein said...
Reexamination Certificate
active
06803391
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to elastomeric compositions that are curable by exposure to ultraviolet (UV) radiation. In addition, this invention relates to a process for curing elastomeric seals rapidly, wherein the seals are formed by applying an uncured polymer composition directly onto a sealing element or a surface to be sealed. This invention further relates to cured articles produced by the process of the invention.
BACKGROUND OF THE INVENTION
Elastomeric compositions require a vulcanization, i.e. curing, step in order to develop the crosslinked network structure which confers optimum rubbery properties to such compositions. Typically, the curing processes are based on compression molding or transfer molding techniques wherein an elastomer, fully compounded with curing agent and other additives, is introduced into a mold that is then heated under pressure. The elevated temperatures used during the molding process cause chemical reaction of the elastomer and curative, thereby producing a crosslinked product.
The particular raw (i.e. uncured) elastomer used to manufacture a synthetic rubber article will be selected with reference to the specific end use application and environment under which the finished article must function. For example, one will select different elastomers from among ethylene alkyl acrylate copolymer rubbers, ethylene alpha-olefin copolymer elastomers, fluoroelastomers and chlorinated elastomers depending upon whether the finished article will be exposed to oils, water, fuels, acids or bases. One will also consider the temperature range to which the article will be subjected and special requirements such as flame resistance. In addition, consideration will be given to the cure characteristics of the polymer and the ease with which defect-free parts can be produced.
The majority of elastomeric seals manufactured on a commercial scale are crosslinked at high temperature in molding processes. Generally, elastomeric seals and gaskets thus produced are manually fitted onto an article to be sealed. Alternatively, adhesives are sometimes utilized to attach the cured sealing member to an article. Such attachment techniques are not completely satisfactory in all cases. In particular, manual methods are time consuming and adhesives can affect the physical properties of the seal.
Elastomeric gaskets are often utilized as sealing members for grooved parts, such as rocker covers and air intake manifolds, that are used in automobile engines. Such gaskets must be resistant to the effects of heat and oil. Traditionally, cured, oil-resistant elastomer compositions, such as ethylene alkyl acrylate copolymer rubbers, have been manually introduced into the groove of a metal part. Many automotive components are now formed from high performance thermoplastic materials, rather than from metal. Manual fitting of elastomeric seals onto these components is time-consuming, but curing the seal in place is impractical because either the cure temperature or, in some cases, the post cure temperature, is usually high enough to cause deformation of the thermoplastic. Yet, if the cure temperature is lowered, cure rate is too slow to be practical. Oil or fuel resistant elastomeric compositions that could be readily applied to an article or groove in their uncured state and that are adapted to low temperature curing techniques would therefore be especially useful in manufacture of thermoplastic articles having attached sealing members for automotive or industrial uses.
Low temperature curing processes that are initiated by high energy radiation, such as electron beam or &ggr;-radiation, are known for use with almost any elastomer, including ethylene acrylate copolymer elastomers. For example, electron beam crosslinking of wire and cable insulation compositions, including elastomeric compositions, is disclosed in E. Brandt and A. Berejka,
Electron Beam Crosslinking of Wire and Cable Insulation
, Rubber World, 49, November 1978. Eldred, in U.S. Pat. No. 3,950,238, discloses the use of electron beam radiation to cure acrylonitrile butadiene polymers and Clarke, in U.S. Pat. No. 4,275,180, discloses the use of electron beam radiation cure of a blend of an ethylene acrylate copolymer rubber and a thermoplastic polymer, e.g. for cable jacketing. Electron beam cures have the disadvantage of requiring quite complex and expensive equipment for generating high energy particles. It would therefore be advantageous to have available a low temperature curing process that did not rely on the use of electron beam radiation. Low temperature UV cures of a variety of polymers, including ethylene acrylate polymers, are disclosed in U.S. Pat. No. 4,863,536. However, the disclosed process involves dissolution of the particular polymer in an acrylate monomer and is not suitable for preparation of general rubber goods, such as gaskets and seals.
In addition to having available an effective low temperature cure process for ethylene acrylate copolymer elastomers, it would also be advantageous to have available similar curing techniques for use with other elastomers as well. As is the case with ethylene acrylate copolymers, typical curing processes for fluoroelastomers are based on high temperature compression molding or transfer molding techniques. Products made using such processes include seals, gaskets, tubing, and other general rubber goods. In addition, textile composites coated with fluoroelastomers are available commercially and are generally subjected to a baking process during fabrication, for example as disclosed in U.S. Pat. No. 4,770,927 to Effenberger et al.
Low temperature radiation curing processes for fluoroelastomers are known in the prior art. For example, a stain-resistant protective fluoroelastomer coating composition for flooring that is curable using UV radiation is disclosed in European Patent Application 570254. UV cure of epoxy-containing fluorinated copolymers is described in Japanese Kokai Patent Application 5-302058. In addition, UV or electron beam cures of certain fluoroelastomer compositions that are normally cured with a polyol or polyamine crosslinking agent are disclosed in German Patent 19642029 and in Japanese Kokai Patent Application 61-031411. Blends of fluoroplastics and ethylene vinyl acetate copolymers or ethylene acrylic acid ester copolymers that are cured with UV radiation are disclosed in Japanese Kokai Patent Application 5-078539.
These prior art compositions possess interesting properties, but they do not provide compositions that exhibit the tensile strength, modulus, and compression set that is required in many commercial applications, for example air intake manifold gaskets. There thus remains a need in the art for fluoroelastomer compositions that can be cured at low temperature by low energy radiation processes and that, when cured, exhibit excellent tensile strength, modulus, and compression set.
Similarly, chlorinated elastomers such as chlorinated polyethylene, chlorosulfonated polyethylene and epichlorohydrin rubber, are traditionally crosslinked thermally by either ionic or free radical cure systems in compression molds. Extended high temperature exposure of curable compositions containing these polymers can be problematic due to the tendency of these polymers to dehydrochlorinate. Because of the high cure temperatures required, these elastomers have little utility in applications involving formation of elastomer/thermoplastic composites that are cured in place. Just as with ethylene alkyl acrylate elastomers, manufacture of chlorinated elastomer/thermoplastic composite articles requires an elastomer that can be cured at a temperature sufficiently low to preclude deformation of the thermoplastic. Low temperature UV cures of chlorinated polyolefin coating compositions are known. U.S. Pat. No. 4,880,849 discloses a UV-curable chlorinated polyolefin coating having excellent adhesion to plastic substrates. Japanese Kokai Patent Application 63-267517 discloses UV cure of chlorosulfonated polyethylene rubber and epichlorohydrin hose that is fir
Paglia Patrick Luigi
Ruepping Christian
Cameron Erma
DuPont Dow Elastomers LLC
LandOfFree
UV curable elastomer composition does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with UV curable elastomer composition, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and UV curable elastomer composition will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3297351