Utilization of osteocalcin promoter to deliver therapeutic...

Chemistry: molecular biology and microbiology – Vector – per se

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C424S093200, C424S093600, C514S04400A, C435S069100

Reexamination Certificate

active

06596534

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention pertains to the systemic administration of an active agent, a recombinant gene comprising an adenovirus (Ad) which contains an osteocalcin promoter (OC) which drives the expression of thymidine kinase (TK). The agent itself is fully disclosed in the parent application. This invention pertains to the discovery that Ad-OC-TK may be administered systemically, both to treat tumors, and to treat certain benign conditions such as benign prostatic hypertrophy and certain forms of arteriosclerosis.
2. Background of Related Work
Toxic gene therapy for the treatment of cancer continues to gain prominence in basic research, but remains limited in clinical application because of an inability to deliver the toxic gene to the tumor cells with specificity. Many vectors (e.g. retroviruses, retroviral producing cells, adenoviruses, liposomes, and others) can deliver genes (therapeutic or toxic) to target cells. Localized delivery and restricted gene expression to the primary tumor have been accomplished via direct injection of therapeutic viruses in animal models
1-4
and clinical trails.
5,6
This approach is not feasible for the treatment of metastatic disease because of the presence of multiple lesions that would each require separate injection and manipulation. Therefore, alternative approaches to the treatment of metastatic disease with gene therapy must be developed.
Systemic delivery of therapeutic genes is attractive for targeting metastatic disease, pulmonary metastases in particular. Because the pulmonary vascular system would be the first encountered, the adenovirus would be trapped in the lung parenchyma, allowing for higher infectivity. Lesoon-Wood et al,.
7
reported the systemic delivery of wild type p53 complexed with liposomes, targeting the p53 mutated breast cancer cell line (MDA-MB435), inhibiting primary tumor growth by 60%, and decreasing pulmonary metastases in nude mice. Vile et al.
8
demonstrated inhibition of B-16 melanoma pulmonary metastases in syngeneic immunocompetent mice by a systemic delivery of retrovirus using a tyrosinase promoter to drive the expression of the toxic gene thymidine kinase (TK) gene.
Compared to liposome or retrovirus, adenovirus has several advantages in a systemic delivery strategy, such as its high infectivity in vivo and production techniques that can achieve high viral titers. However, Brand et al.
9
recently reported that systemic administration of adenovirus containing TK under the control of a universal promoter (CMV) supplemented with ganciclovir treatment induced severe hepatotoxic effects. This study suggested that restriction of toxic gene (TK) expression by tissue specific promoter may be necessary prior to the consideration of systemic adenoviral vector delivery. Moreover, the tissue-specific promoter should limit the toxic gene expression in normal tissues so it can be applied in higher doses than the universal promoter-based toxic gene therapy for more effective treatment of metastatic diseases.
To study the potential therapeutic efficacy of systemic cancer gene therapy for the treatment of pulmonary metastases, osteosarcoma is an attractive model because a significant number of these patients eventually develop lung metastasis. Initially, surgical resection of the primary lesion and adjunctive chemotherapy are the mainstay of today's therapy. For the 20% that present with metastatic disease, 80% will require additional therapy for relapse; while of the 80% that present with local disease, 35% will require additional therapy for relapse after surgery and adjunctive chemotherapy.
10
Therefore, 44% of patients diagnosed with osteosarcoma will fail conventional first line therapy. Patients developing recurrent disease usually have a poor prognosis, dying within one year of the development of metastatic disease.
11-14
New therapeutic approaches that can be applied either separately or in conjunction with current modalities in treating osteosarcoma pulmonary metastases are needed.
The osteocalcin promoter (OC) has been shown to be highly effective in directing the transcription of reporter genes in both rat and human osteosarcoma cell lines.
4,15
In parent application U.S. Ser. No. 08/785,088 and concurrent publications it was shown that a recombinant adenovirus containing TK gene under the control of OC promoter, when supplemented with a prodrug ACV, could suppress osteosarcoma growth through intralesional injection in both rat and human osteosarcoma models.
1,4
Osteosarcoma, a bone cancer occurring primarily in teenagers and young adults, affects approximately 2100 individuals yearly in the United States (Boring, C. C., Squires, T. S., Tong, T., and Montgomery. S. Cancer statistics, 1994, CA Cancer J. Clin., 44; 7-26, 1994). This malignancy accounts for as many as 5% of all childhood malignancies and 60% of all malignant childhood bone tumors (Hudson, M., Jaffe, M. R., and Jaffe, N. Pediatric osteosarcoma: therapeutic strategies, results, and prognostic actors derived from a 10 10-year experience. J. Clin. Oncol., 8: 1988-1997, 1990). Despite radical surgical resection of the primary tumor and aggressive adjuvant chemotherapy, the overall 2-year metastasis-free survival rate approaches only 66%. More than 30% of patients with this disease develop lung metastasis within the first year (Link, M. P., Goorin, A. M., Mixer, A. W., Link, M. P., Goorin, A. M., Miser, A. W., Green, A. A., Pratt, C. H., Belasco, J. B., Pritchard, J., Malpas, J. S., Baker, A. R., Kirkpatrick, J. A., Ayala, A. O., Schuster, J. J., Abelson, H. T., Simone, J. V., and Vietti, T. J. The effect of adjuvant chemotherapy on relapse-free survival in patients with osteosarcoma of the extremity. N. Engl. J. Med, 314: 1600-1602, 1991. Goorin, A. M., Perez-Atayde, A., Gebbhardt, M., et al. Weekly high-dose methotrexate and doxorubicin for osteosarcoma: the Dunn-Farber Cancer Institute/The Children's Hospital-Study III. J. Clin. Oncol., 5: 1178-1184, 1987). The survival rate among those affected with osteosarcoma has not changed significantly over the past 10 years, despite changes in adjuvant chemotherapy, Kane, M. J. Chemotherapy of advanced soft tissue and osteosarcoma. Semin. Oncol., 16:297-304, 1989.
The concept of delivery and expression of therapeutic toxic genes to tumor cells through the use of tissue-specific promoters has been well recognized. This approach could decrease the toxic effect of therapeutic genes on neighboring normal cells when virus-mediated gene delivery results in the infection of the normal cells. Examples include the uses of the albumin or &agr;-fetoprotein promoter to target hepatoma cells (Kuriyama, S., Yoshikawa, M., Ishizaka, S., Taujli, T., Ikenaka, K., Kagawa, T., Morita, N., and Mikoshiba, K. A. potential approach for gene therapy targeting hepatoma using a liver-specific promoter on a retroviral vector, Cell Struct. Punct., 16: 503-510, 1991), the bone morphogenic protein promoter for brain to target glioma cells (Shirnizu, K. Selective gene therapy of malignant glioma using brain-specific promoters; its efficacy and basic investigation, Nippon Rinsbo, 52: 3053-3058, 1994), the tyrosinase promoter to kill melanoma cells (Vile, R. G., Nelson, J. A., Castleden, S., Chong, H., and Hart, I. R. Systemic gene therapy of murine melanoma using tissue specific expression of the HSVtk gene involves an immune component. Cancer Res., 54:6228-6234, 1994), and the carcinoembryonic antigen promoter for gastric carcinoma cells (Tanaka, T., Kanai. F., Okabe, S., Yoshida, Y., Wakimoto, H., Hamada, H., Shiratori, Y., Lan, K-H., Ishitobi, M., and Omata, M. Adenovirus-mediated prodrug gene therapy for carcinoembryonic antigen-producing human gastric carcinoma cells in vitro. Cancer Res., 46: 1341-1345, 1996). To date, the best studied therapeutic gene is herpes simplex virus TK gene. Herpes simplex virus-TK converts the pro-drug ACV to a phosphorylated form that is cytotoxic to dividing cells (Moolten, F. L., Tumor chemosensitivity conferred by inserted herpes thymidin

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Utilization of osteocalcin promoter to deliver therapeutic... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Utilization of osteocalcin promoter to deliver therapeutic..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Utilization of osteocalcin promoter to deliver therapeutic... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3079981

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.