Utilization of disappearing silicon hard mask for...

Semiconductor device manufacturing: process – Chemical etching – Combined with the removal of material by nonchemical means

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C438S701000, C438S706000, C438S712000

Reexamination Certificate

active

06534408

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to the formation of contacts and runners in semiconductor devices. More particularly, the present invention relates to a dual damascene metallization method used in the formation of semiconductor devices utilizing a silicon hard mask to minimize thickness of resist material required to form contacts and runners in the semiconductor devices.
2. State of the Art
Two exemplary methods of fabricating contacts and runners for integrated circuits are damascene and dual damascene techniques. The damascene technique is an interconnection fabrication process in which runner trenches are formed in an insulating or dielectric layer of a semiconductor device. The runner trenches are then filled with metal or other conductive material to form conductive lines, known as “runners.” The dual damascene technique is a multilevel interconnection fabrication process in which, in addition to forming runner trenches, contact openings are formed in the insulating or dielectric layer of the semiconductor device. The runner trenches and the contact openings are then simultaneously filled with conductive material to form both the runners and contacts.
An exemplary dual damascene technique for forming a memory cell includes providing an intermediate structure including a substrate having active areas electrically isolated by field oxide areas. The isolated active areas have drain regions and source regions doped into the substrate. Transistor gate members are formed on the surface of the substrate, including gate members residing on substrate active areas spanned between the drain regions and the source regions, and further including gate members residing on the thick field oxide. An insulating layer covers the transistor gate members and the substrate. The insulating layer is patterned with a first resist material such that the patterned first resist material has a plurality of openings located in desired positions for forming contact openings. The insulating layer is then anisotropically etched through the openings in the first resist material to expose the source regions and the drain regions in the underlying substrate. The first resist material is then removed and the insulating layer is coated with a second resist material which is patterned with the image pattern of the desired runners in alignment with the contact openings. The insulating layer is anisotropically etched to form runner trenches in an upper portion of the insulating material. After the runner trench etching is complete, both the contact openings and runner trenches are filled with metal or other conductive material, thereby forming the contacts and the runners. The dual damascene technique is an improvement over the single damascene technique because the dual damascene fills both the contact openings and the runner trenches with conductive material at the same time, thereby eliminating process steps for filling the contact openings and runner trenches separately. The dual damascene technique may also be used for forming multilevel signal lines in the insulating layers of a multilayer substrate on which various semiconductor devices reside.
Higher performance, lower cost, increased miniaturization of components, and greater packaging density of integrated circuits are ongoing goals of the computer industry. The advantages of increased miniaturization of components include: reduced-bulk electronic equipment, improved reliability by reducing the number of solder or plug connections, lower assembly and packaging costs, and improved circuit performance. However, as components become smaller and smaller, tolerances for all semiconductor structures (such as circuitry runners, contacts, and the like) become more and more stringent. Although the reduction in size creates technical problems, the future advancement of the technology requires the capability for forming sub-0.35 &mgr;m contact openings with aspect ratios (height to width) as high as 10 to 1.
An exemplary technique employed in forming high aspect ratio structures is MERIE (magnetically enhanced reactive ion etch). For example, if a 3 micron (30 kÅ) deep contact opening in an insulating layer, such as BPSG (borophosphosilicate glass), is desired, a layer of resist material having a thickness of at least about 11 to 14 kÅ is necessary. Such a thickness of resist material is required because as the insulating layer is etched in the MERIE system, the resist material is also ablated away. Thus, the resist material must be thick enough not to ablate completely away during the etching of the contact opening in the insulating layer. If the resist material is ablated away, the MERIE will damage (i.e., etch) the top surface of the insulating layer. Unfortunately, the thicker the resist material, the more difficult it is to form contact openings. More specifically, the depth of focus is reduced as resist thicknesses increase, therefore reducing the reproducible resolution obtainable in the photolithography step. Thus, the best pattern resolution is obtained with thinner photoresists. If the patterned images (e.g., by lithography) are not well defined (which occurs with a thick resist layer), the etching of the contact opening in the insulating layer slows down or stops before reaching the substrate. Thus, no contact can be made with the source or drain regions on the substrate. In order to insure complete etching of the contact opening, the thickness of the resist material can be reduced (for example down to about 8 to 10 kÅ) or the chemistry (chemicals used in the MERIE system) can be changed to run with a specific chemistry that results in less polymerizing (i.e., less polymer-rich chemistry which means a lower resist material selectivity). The “lower” polymerizing etches generally can etch deeper for a given contact size than “higher” polymerizing etches, which tend to form more sidewall polymer, eventually sealing the contact shut during the etch. With either option, the resist material will likely be ablated away before completion of the etching of the contact opening in the insulating material. Another option is to increase the diameter of the contact opening. However, this would decrease the aspect ratio which is, of course, counter to the goal of semiconductor miniaturization.
Therefore, it would be advantageous to develop a technique for forming high aspect contacts for semiconductor devices which minimizes the thickness of resist material required in the formation of the same, while using inexpensive, commercially available, widely practiced semiconductor device fabrication techniques and equipment without requiring complex processing steps.
BRIEF SUMMARY OF THE INVENTION
The present invention relates to forming a silicon hard mask to act as a potential etch stop between a patterned resist layer and a buffer or insulator layer in the fabrication of structures, such as contacts, for semiconductor devices. The present invention may also be used in a dual damascene metallization method in the formation of contacts and runners in semiconductor devices.
The most fundamental method aspect of the present invention involves forming a contact in a barrier layer which covers an active element (such as a conductive material or metal trace, source region or a drain region doped in a silicon substrate, or the like) of a semiconductor device. A silicon hard mask, such as an amorphous silicon (“a-Si”) or polymeric silicon (“poly-Si”) layer, is deposited over the barrier layer. A resist layer is then patterned on the silicon hard mask. The silicon hard mask and barrier layer are etched to form a contact opening. The silicon hard mask acts as a backup to the resist layer. The silicon hard mask prevents the potential etching of the barrier layer, which is protected by the first resist layer, by acting as an etch stop if the first resist layer is ablated away during the etching of the contact E openings. If such a silicon hard mask is not used, the resist layer must be thicker in order to ensure

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Utilization of disappearing silicon hard mask for... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Utilization of disappearing silicon hard mask for..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Utilization of disappearing silicon hard mask for... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3050446

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.