Utilization of dialkyfumarates

Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Ester doai

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C514S960000

Reexamination Certificate

active

06509376

ABSTRACT:

DESCRIPTION
The present invention relates to the use of dialkyl fumarates for preparing pharmaceutical preparations for use in transplantation medicine or the therapy of autoimmune diseases and pharmaceutical preparations in the form of micro-tablets or micro-pellets containing dialkyl fumarates.
On the one hand, therefore, it relates especially to the use of dialkyl fumarates for preparing pharmaceutical preparations for the treatment, reduction or suppression of rejection reactions of the transplant by the recipient, i.e. host-versus graft reactions, or rejection of the recipient by the transplant, i.e. graft-versus-host reactions. On the other hand, it relates to the use of dialkyl fumarates for preparing pharmaceutical preparations for treating autoimmune diseases such as polyarthritis, multiple sclerosis, juvenile-onset diabetes, Hashimoto's thyroiditis, Grave's disease, systemic Lupus erythematodes (SLE), Sjogren's syndrome, pernicious anaemia and chronic active (=lupoid) hepatitis.
Both graft rejection and autoimmune diseases are based on medically undesirable reactions or dysregulation of the immune system. Cytokins such as interleukins or tumour necrose factor &agr; (TNF-&agr;) are substantial mediators influencing the immune system. In general, both are treated by the administration of immunosuppressive agents such as cyclosporine.
In the overall result, autoimmune diseases may be defined as the failure of the tolerance of endogenic substances or antigens. As a rule, this tolerance can be maintained only if the antigens keep coming into contact with immunological cells. When this tolerance is lost, autoantibodies are formed, i.e. a humoral immunoresponse against endogenic tissue. The exact nature of the involvement of TNF-&agr; is not known.
Transplantations are tissue or organ transplantations, i.e. the transfer of tissues such as cornea, skin, bones (bone chips), vessels or fasciae, of organs such as kidney, heart, liver, lung, pancreas or intestines, or of individual cells such as islet cells, &agr;-cells and liver cells, the kidney having the greatest significance as a transplanted organ.
According to the degree of relationship between the donor and the recipient we differentiate between auto-transplantation (transfer to another part of the body of the same individual), iso-transplantation (transfer to another, genetically identical individual) and allogenic transplantation (transfer to another individual of the same species). Depending on the site of origin and transplantation, we further differentiate between homotopic transplantation (transfer to the same site) and heterotopic transplantation (transfer to a different site). The above-mentioned transplantations play an important role in modern medicine.
A major problem in transplantation medicine is graft rejection after transplantation of the tissue, organ or cell by immunological defence reactions of the recipient. Such a graft rejection is also called host-versus-graft reaction. The immunological defence reaction of the organism against the heteroprotein often results in rejection or dissolution of the grafts. In host-versus-graft reactions, different stages may be distinguished. Depending on the degree of difference between the recipient and the donor, this reaction takes place at different speeds so that we speak of an acute, subacute or chronic reaction. The acute rejection process is accompanied by the irreversible loss of the transplant (necrotisation) as a result of arteriitis or arteriolitis within 48 hours and cannot be influenced by the administration of drugs. The sub-acute rejection reaction becomes manifest as a rejection crisis from day 12 to month 4 with reversible functional disorders as a result of a transplant vasculopathy. Finally, the loss of function of the transplant as a result of vascular changes such as obliterating arteriopathy, which proceeds over weeks or years and can practically not be influenced by drugs, is termed a chronic rejection reaction.
Vice-versa, rejection reactions of the transplant against the recipient, the so-called graft-versus-host reactions, may occur when immunocompetent tissues are transplanted, i.e. primarily in bone marrow transplantation. Again, the severity of the reaction is graded, and substantially similar complications result as in host-versus-graft-reactions, namely arteriopathies and necroses.
To avoid such rejection reactions, i.e. the host-versus-graft reaction and the graft-versus-host reaction, transplantation medicine essentially makes use of immunosuppression, i.e. a weakening of the normal immunoresponse. For this purpose, anti-lymphocyte sera are often used in combination with corticosteroids and so-called anti-metabolites, e.g. purine analogues such as 6-mercaptopurine and thioguanine which affect the nucleic acid and protein synthesis and thus prevent cell division and proliferation. This leads to suppression or the production of antibodies and the cellular immune response. The immunosuppressive agents used for therapy are substances which suppress or weaken the immunoreaction in the body either specifically or non-specifically. Non-specific immunosuppressive agents are cytostatic agents such as, for example, alkylating agents or antimetabolites.
In addition, active ingredients are known which cause at least partial specific immunosuppression, such as corticosteroids, antisera, antibodies FK-506, tacrolimus, mycophenolatemofetil and primarily cyclosporines such as cyclosporine A. As a result of using modern immunosuppressive agents, the most important representatives of which are the cyclosporines, especially cyclosporine A, it was possible to improve the results of transplantation considerably over the last few years. At present, the survival rate after one year is about 60% for liver transplantations, about 80% for heart transplantations and over 90% for kidney transplantations.
Autoimmune diseases where the endogenic immune system attacks endogenic organs, tissues and cells are comparable to graft-versus-host reactions. These are also medically undesirable reactions of the immune system which may be treated with immunosuppressive agents, too.
The danger in using immunosuppressive agents lies in weakening the body's defence against infectious diseases and the increased risk of malignant diseases. Therefore, it is the object of the invention to provide a pharmaceutical preparation to be employed in transplantation medicine which may be used to treat, especially to suppress, weaken and/or alleviate host-versus-graft reactions and graft-versus-host reactions, but does not have the above disadvantage.
It is another object of the invention to provide a pharmaceutical preparation which may be employed for treating autoimmune diseases, particularly polyarthritis, multiple sclerosis, juvenile-onset diabetes, Hashimoto's thyroiditis, Grave's disease, systemic Lupus erythematodes (SLE), Sjogren's syndrome, pernicious anaemia and chronic active (=lupoid) hepatitis, without the disadvantages of immunosuppression.
The object of the invention is achieved by using certain dialkyl fumarates for preparing pharmaceutical preparations for use in transplantation medicine and for the therapy of autoimmune diseases and pharmaceutical preparations in the form of micro-tablets and micro-pellets containing these dialkyl fumarates. The individual subject matters of the invention are characterised in detail in the claims. The preparations according to the invention do not contain any free fumaric acids per se.
It is known that pharmaceutical preparations which, upon biological degradation after administration, enter into the citric acid cycle or are part thereof gain increasing therapeutic significance—especially when given in high dosages—since they can alleviate or heal diseases caused cryptogenetically.
Fumaric acid, for example, inhibits the growth of the Ehrlich ascites tumour in mice, reduces the toxic effects of mitomycin C and aflatoxin and displays anti-psoriatic and anti-microbial activity. When administer

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Utilization of dialkyfumarates does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Utilization of dialkyfumarates, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Utilization of dialkyfumarates will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3015158

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.