Using rendering molecules to manage scene-based rendering

Computer graphics processing and selective visual display system – Computer graphics processing – Three-dimension

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C345S423000

Reexamination Certificate

active

06734852

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates generally to the field of computer graphics and, more particularly, to graphics systems and software that manage and render three-dimensional graphics data.
2. Description of the Related Art
A computer system typically relies upon its graphics system for producing visual output on the computer screen or display device. Early graphics systems were only responsible for taking what the processor produced as output and displaying it on the screen. In essence, they acted as simple translators or interfaces. Modern graphics systems, however, incorporate graphics processors with a great deal of processing power. They now act more like coprocessors rather than simple translators. This change is due to the recent increase in both the complexity and amount of data being sent to the display device. For example, modem computer displays have many more pixels, greater color depth, and are able to display more complex images with higher refresh rates than earlier models. Similarly, the images displayed are now more complex and may involve advanced techniques such as anti-aliasing and texture mapping.
As a result, without considerable processing power in the graphics system, the CPU would spend a great deal of time performing graphics calculations. This could rob the computer system of the processing power needed for performing other tasks associated with program execution and thereby dramatically reduce overall system performance. With a powerful graphics system, however, when the CPU is instructed to draw a box on the screen, the CPU is freed from having to compute the position and color of each pixel. Instead, the CPU may send a request to the video card stating “draw a box at these coordinates.” The graphics system then draws the box, freeing the processor to perform other tasks.
Generally, a graphics system in a computer (also referred to as a graphics system) is a type of video adapter that contains its own processor to boost performance levels. These processors are specialized for computing graphical transformations, so they tend to achieve better results than the general-purpose CPU used by the computer system. In addition, they free up the computer's CPU to execute other commands while the graphics system is handling graphics computations. The popularity of graphical applications, and especially multimedia applications, has made high performance graphics systems a common feature of computer systems. Most computer manufacturers now bundle a high performance graphics system with their systems.
Since graphics systems typically perform only a limited set of functions, they may be customized and therefore far more efficient at graphics operations than the computer's general-purpose central processor. While early graphics systems were limited to performing two-dimensional (2D) graphics, their functionality has increased to support three-dimensional (3D) wire-frame graphics, 3D solids, and now includes support for three-dimensional (3D) graphics with textures and special effects such as advanced shading, fogging, alpha-blending, and specular highlighting.
To take advantage of the new capabilities of both graphics systems and modern CPUs in general, graphics application program interfaces (“APIs”) have been developed. An API is a set of routines, protocols, and/or tools for building software applications. An API attempts to simplify the task of developing a program by providing building blocks needed by programmers to create their application. One example of a popular API is Microsoft Corporation's Win32 API.
While graphics API have been successful in allowing programmers to rapidly develop graphical applications, the recent increase in the complexity of the scenes being rendered is placing ever greater demands on the CPUs and graphics systems that are executing the applications. Traditionally, when tasks become too computationally intensive for a single CPU, multiple CPU systems are used. These multiple CPU systems utilize parallel processing to divide the computations among two or more processors. However, typical graphics APIs are not well suited to allow parallel processing, particularly over a network. Thus, a system and method for efficiently managing the creation, updating, and rendering of a complex scene is needed. In particular, a system and method capable of being implemented in an API and capable of supporting distributed processing in a networked setting is also desired.
SUMMARY OF THE INVENTION
The problems identified above may at least in part be solved by a system and method for using rendering molecules in connection with scene graphs as described herein. In one embodiment, the system generate a parallel structure for the scene graph-based data. The parallel structure may include both objects and threads. Advantageously, the system may utilize a parallel structure for rendering and thereby avoid repeated traversals of the scene graph in its hierarchy (i.e., tree) form. This parallel structure may be implemented in an API such that it is effectively unseen by graphics application programmers, who continues to use the scene graph structure to create graphics applications.
In one embodiment, the system may be configured to utilize a scene graph directly. In another embodiment, the system may be configured to utilize a scene graph as a source for ancillary structures. The ancillary structures may aid the system in rendering and executing the scene-graph-based program. The system may also include support for messaging between threads and objects, messaging with time and/or event stamps, epochs to ensure consistency, and ancillary structures such as render-bins, geometry structures, and rendering environment structures.
A computer program is also contemplated. In one embodiment, the computer program comprises a plurality of instructions configured to receive a scene graph and traverse the scene graph to generate a plurality of structures and threads corresponding to the scene graph. The scene graph may include information representing a plurality of three-dimensional objects. The scene graph may also include a number of different types of data, including, behavior data for the three-dimensional objects, sound data, haptic data (e.g., force-feed back data) appearance data, geometry data, environmental data (e.g., lighting, fog), and other data. Each structure may be an object that manages selected data from the scene graph, and the plurality of threads may be executable to render one or more frames corresponding to the scene graph. In some embodiments the threads may be configured to generate messages to specify state changes, and the messages can be multicast to multiple structures or unicast to a single structure. Each structure may have a corresponding update thread configured to update the structure.
One of the parallel structures created is preferably a render bin that is configured to receive and store references to particular geometry data that is to be rendered in the render bin. The render bin may have one or more render threads associated with it, thereby enabling parallel rendering utilizing multiple processors.
Advantageously, each structure may be configured to manage (and optionally optimize) its own data. Thus one structure may manage all transform data, and may optimize multiple transforms by collapsing them together.
As noted above, a method for managing and rendering a scene graph is also contemplated. In one embodiment, the method may include generating a scene graph, wherein the scene graph comprises information representing a plurality of three-dimensional objects; and traversing the scene graph to generate a parallel set of structures and threads corresponding to the scene graphs, wherein each structure comprises an object that manages selected data from the scene graph, and wherein the plurality of threads are executable to render one or more frames corresponding to the scene graph. The method may be implemented in software, hardware, or a combination thereof.
In some

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Using rendering molecules to manage scene-based rendering does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Using rendering molecules to manage scene-based rendering, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Using rendering molecules to manage scene-based rendering will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3262116

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.