Telecommunications – Carrier wave repeater or relay system – Portable or mobile repeater
Reexamination Certificate
1997-11-14
2002-03-05
Trost, William (Department: 2683)
Telecommunications
Carrier wave repeater or relay system
Portable or mobile repeater
C455S063300, C455S501000, C370S315000
Reexamination Certificate
active
06353729
ABSTRACT:
TECHNICAL FIELD OF THE INVENTION
The present invention relates in general to RF communications systems and, in particular, to the use of RF repeaters to combat interference caused by a non-collocated radio in code division multiple access (CDMA) applications within personal, cellular, and other mobile communications systems (PCS, cellular, mobile).
BACKGROUND
Throughout the world, certain radio frequency (RF) bands have been allocated for various types of communications, including personal communications system (PCS), cellular, and other mobile applications. In the United States, the Federal Communications Commission (FCC) has allocated frequency bands in the range of 824-849 and 869-894 MHz; and 1850-1910 and 1930-1990 MHz for such applications. Currently, the 824-849 and 869-894 MHz bands are used for mobile cellular communications and the 1850-1910 and 1930-1990 MHz bands are used for PCS applications. Foreign countries have also allocated certain frequencies for cellular applications, including Japan (870-885; 925-940 MHz), England (917-950; 872-905 MHz), Scandinavia (463-467.5; 453-457.5 MHz), Germany (461.3-465.74; 451.3-455.74 MHz), etc. Additionally, Europe has allocated a separate band (890-915; 935-960 MHz) for digital cellular applications in the Global System for Mobile (GSM) communications system (GSM is a combination of frequency division multiple access (FDMA) and time division multiple access (TDMA)).
In the United States mobile cellular band, the frequency band is divided into two separate bands: A and B bands, with each band including 25 MHz bandwidth. The A band occupies 824-835 MHz and 845-846.5 MHz for subscriber station transmission and 869-880 MHz and 890-891.5 MHz for base station transmission. The B band occupies 835-845 MHz and 846.5-849 MHz for subscriber station transmission and 880-890 MHz and 891.5-894 MHz for base station transmission. In addition, the A and B bands are geographically provisioned by the FCC. The A and B bands have been allocated by the FCC to allow one service provider to occupy the A band and a different service provider to occupy the B band, thus allowing for some semblance of competition in the marketplace for mobile cellular communication providers within a given geographic area. Within each service provider's band and geographic area, the service provider may utilize any type of technology including frequency division multiple access (FDMA), time division multiple access (TDMA), code division multiple access (CDMA), or combination thereof.
In the United States PCS band, the frequency band is divided into six separate bands: A, B, C, D, E and F bands, with bandwidths totalling 30 MHz, 30 MHz, 30 MHz, 10 MHz, 10 MHz, and 10 MHz, respectively. The A band occupies 1850-1865 MHz for subscriber station transmission and 1930-1945 MHz for base station transmission. The B band occupies 1870-1885 MHz for subscriber station transmission and 1950-1965 MHz for base station transmission. The C band occupies 1895-1910 MHz for subscriber station transmission and 1975-1990 MHz for base station transmission. The D band occupies 1865-1870 MHz for subscriber station transmission and 1945-1950 MHz for base station transmission. The E band occupies 1885-1890 MHz for subscriber station transmission and 1965-1970 MHz for base station transmission. The F band occupies 1890-1895 MHz for subscriber station transmission and 1970-1975 MHz for base station transmission. The A, B, and C bands (MTA) are currently provisioned for use in metropolitan areas, while the D, E, and F bands (BTA) are provisioned for use in areas less populated. In addition, each of these sets of bands is geographically provisioned by the FCC. The A, B and C bands have been allocated by the FCC to allow one service provider to utilize one of the bands with different service providers utilizing the remaining bands. Likewise for the D, E, and F bands. Again, this allows for competition in the marketplace for PCS communication providers within a given geographic area. Within each service provider's band and geographic area, the service provider may utilize any type of technology including FDMA, TDMA, CDMA, or combination thereof.
Frequency division multiple access (FDMA) technology utilizes narrow and discreet channels within the frequency band. Different signals are assigned different frequency channels. Interference to and from adjacent channels is limited by the use of bandpass filters which pass the signal energy within the narrow channels while rejecting signals having other frequencies. The United States cellular system (AMPS) divides the allocated spectrum into 30 KHz bandwidth channels and uses FM modulation.
Time division multiple access (TDMA) technology also utilizes narrow and discreet channels within the frequency band. However, each channel is further divided into time slots in the time domain. This results in multiple users on the same frequency channel and increases the number of users per given channel.
Unlike FDMA or TDMA, code division multiple access (CDMA) involves multiple users simultaneously sharing a channel having relatively wide bandwidth. CDMA standards (IS-95) currently specify a CDMA channel having a bandwidth of 1.25 MHz. In CDMA, a large number of signals share the same frequency spectrum. Each signal consists of a different psuedorandom binary sequence that modulates a carrier signal (at the center frequency of the channel's spectrum). This spreads the spectrum of the waveform over the entire channel bandwidth. Use of CDMA technology allows for a larger number of signals than that used in FDMA or TDMA within the same amount of frequency spectrum.
Typically, service providers in PCS, cellular and other mobile applications divide the particular geographic region in which they are operating into “cells”. This concept is well-known in the industry. Each cell contains a base station (including a transmitter and receiver) and services subscriber users within the boundaries of the cell. Each service provider is free to design its own coverage system including the locations and sizes of its cells, and this usually occurs. As a result, one cell of a first service provider may overlap completely or partially with a cell of another service provider. In FDMA and TDMA, adjacent cells must use channels having different frequencies to avoid interference. In CDMA technology, however, each cell may use all or any portion of the frequency spectrum allocated to the service provider.
All cellular systems were initially designed and deployed with FDMA or TDMA technology. Because no additional frequency spectrum has been allocated by the FCC, service providers desiring to use CDMA technology must utilize the same frequencies currently allocated. Using CDMA technology with FDMA or TDMA, in the current system, or use of CDMA in an all-CDMA system raises some interference problems. This interference is caused by out-of-band emission or intermodulation products of radio transmitters (both subscriber stations and base stations) of one service provider that are in or near the cell coverage area of another service provider.
As described earlier, each service provider within a particular geographic location may use either FDMA, TDMA (including GSM) or CDMA technology in its system and may use any number of cells and locations for its base stations in its system. This overlap increases the possibility of interference. Base stations and subscriber stations of a different technology or same technology operating at a different frequency band will produce out-of-band emission or intermodulation products. These out-of-band emission or intermodulation products may be strong enough to degrade the performance of a nearby channel that belongs to a different service provider. This problem is more acute when the two frequency bands are close to each other, such as adjacent or alternate bands. An example can be a GSM/TDMA/CDMA band A interference into CDMA band D (e.g. PCS) or CDMA band B (e.g. cellular), or an AMPS/TDMA/CDMA cellular band interference into CDMA cellular band.
O
Carr & Storm, L.L.P.
Gesesse Tilahun
Nortel Networks Limited
Trost William
LandOfFree
Using an RF repeater in CDMA applications to combat... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Using an RF repeater in CDMA applications to combat..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Using an RF repeater in CDMA applications to combat... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2884332