Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Peptide containing doai
Reexamination Certificate
1995-06-07
2001-02-13
Ulm, John (Department: 1646)
Drug, bio-affecting and body treating compositions
Designated organic active ingredient containing
Peptide containing doai
C435S069700, C536S023400
Reexamination Certificate
active
06187748
ABSTRACT:
BACKGROUND OF THE INVENTION
Throughout this application, various publications are referenced by Arabic numerals within parentheses. Full citations for these publications may be found at the end of the specification immediately preceding the claims. The disclosures of these publications in their entireties are hereby incorporated by reference into this application in order to more fully describe the state of the art as known to those skilled therein as of the date of the invention described and claimed herein.
The life cycle of animal viruses is characterized by a series of events that are required for the productive infection of the host cell. The initial step in the replicative cycle is the attachment of the virus to the cell surface which is mediated by the specific interaction of the viral attachment protein (VAP) to receptors on the surface of the target cell. The pattern of expression of these receptors is largely responsible for the host range and tropic properties of viruses. The interaction of the VAP with cellular receptors therefore plays a critical role in infection and pathogenesis of viral diseases and represents an important area to target the development of anti-viral therapeutics.
Cellular receptors may be comprised of all the components of membranes, including proteins, carbohydrates, and lipids. Identification of the molecules mediating the attachment of viruses to the target cell surface has been made in a few instances. The most extensively characterized viral receptor protein is CD4 (T4) (1). CD4 is a nonpolymorphic cell surface glycoprotein that is expressed primarily on the surface of helper T lymphocytes and cells of the monocyte/macrophage lineage. CD4 associates with major histocompatibility complex (MHC) class II molecules on the surface of antigen-presenting cells to mediate efficient cellular immune response interactions. In man, CD4 is also the target of interaction with the human immunodeficiency virus (HIV).
HIV infects primarily helper T lymphocytes and monocytes/macrophages, cells that express surface CD4, leading to a gradual loss of immune function which results in the development of the human acquired immune deficiency syndrome (AIDS). The initial phase of the HIV replicative cycle involves the high affinity interaction between the HIV exterior envelope glycoprotein gp120 and surface CD4 (Kd approximately 4×10
−9
M) 2). Several lines of evidence demonstrate the requirement of this interaction for viral infectivity. In vitro, the introduction of a functional cDNA encoding CD4 into human cells which do not express CD4 is sufficient to render otherwise resistant cells susceptible to HIV infection (
3
). In vivo, viral infection appears to be restricted to cells expressing CD4. Following the binding of HIV gp120 to cell surface CD4, viral and target cell membranes fuse, resulting in the introduction of the viral capsid into the target cell cytoplasm.
Characterization of the interaction between HIV gp120 and CD4 has been facilitated by the isolation of cDNA clones encoding both molecules (
4
,
5
). CD4 is a nonpolymorphic, lineage-restricted cell surface glycoprotein that is a member of the immunoglobulin gene superfamily. High-level expression of both full-length CD4 and truncated, soluble versions of CD4 (sCD4) have been described in stable expression systems. The availability of large quantities of purified sCD4 has permitted a detailed understanding of the structure of this complex glycoprotein. Mature CD4 has a relative molecular mass (Mr) of 55 kilodaltons and consists of an amino-terminal 372 amino acid extracellular domain containing four tandem immunoglobulin-like regions denoted V1-V4, followed by a 23 amino acid transmembrane domain and a 38 amino acid cytoplasmic segment. The amino-terminal immunoglobulin-like domain V1 bears 32% homology with kappa light chain variable domains. Three of the four immunoglobulin-like domains contain a disulphide bond (V1, V2 and V4), and both N-linked glycosylation sites in the carboxy-terminal portion of the molecule are utilized (
4
,
6
).
Experiments using truncated sCD proteins demonstrate that the determinants of high-affinity binding to HIV gp120 lie within the amino-terminal immunoglobulin-like domain V1 (
7
-
9
). Mutational analysis of V1 has defined a discrete gp120 binding site (residues
38
-
52
of the mature CD4 protein) that comprises a region structurally homologous to the second complementarity-determining region (CDR2) of immunoglobulins (
9
). The production of large quantities of V1V2 has permitted a structural analysis of the two amino-terminal immunoglobulin-like domains. The structure determined at 2.3 angstrom resolution reveals that the molecule has two tightly associated domains containing the immunoglobulin-fold connected by a continuous beta strand. The putative binding sites for monoclonal antibodies, class II MHC molecules and HIV gp120 (as determined by mutational analysis) map on the molecular surface (
10
,
11
).
A soluble version of the entire extracellular segment of CD4 (V1-V4, termed sCD4) has been described and appears to be a potential therapeutic approach to the treatment of HIV infection
12
). In vitro experiments demonstrate that: 1) SCD4 acts as a “molecular decoy” by binding to HIV gp120 and inhibiting viral attachment to and subsequent infection of human cells; 2) sCD4 “strips” the viral envelope glycoprotein gp120 from the viral surface; and 3) sCD4 blocks the intercellular spread of virus from HIV-infected cells to uninfected cells by inhibiting virus-mediated cell fusion (
1
,
13
).
In addition to in vitro results, experiments with sCD4 in simian immunodeficiency virus (SIV)-infected rhesus monkeys have been described. These studies demonstrated that administration of 2 milligrams (intramuscular) of sCD4 for 28 days to SIV-infected rhesus monkeys led to a decreased ability to isolate virus from peripheral blood lymphocytes and bone marrow. In addition, the growth of granulocyte-macrophage and erythrocyte progenitor colonies in the bone marrow returned to normal levels. These data suggest that administration of sCD4 to SIV-infected rhesus monkeys leads to a diminution of the viral reservoir.
Phase I human clinical trials demonstrated that there is no significant toxicity or immunogenicity associated with administration of sCD4 at does as high as 30 mg/day. Pharmocokinetic studies revealed the serum half-life of sCD4 to be 45 minutes following intravenous administration, 9.4 hours after intramuscular dosing, and 10.3 hours after the drug was given subcutaneously (
14
,
15
). Preliminary antiviral studies were inconclusive with respect to CD4 cell count and levels of HIV antigen. Because the maximum tolerated dose was not reached, the antiviral effect of sCD4 may have been underestimated, especially in light of recent data concerning differences in sCD4 concentrations required to inhibit laboratory strains of HIV-1 compared to primary viral isolates (
16
).
Although these in vitro, primate, and human clinical studies with sCD4 have produced encouraging results, they have also defined several limitations. First, the measured serum half-life of sCD4 is relatively short. Second, sCD4 is monovalent with respect to gp120 binding in contrast with cell surface CD4 and viral surface gp120 which are multivalent. Third, sCD4 is not cytotoxic for HIV-infected cells. Fourth, sCD4 may not cross the placenta to a significant degree. Therefore, chimeric CD4 molecules have been described which take advantage of the immunoglobulin-like nature of CD4 and several beneficial properties of immunoglobulins themselves (i.e. CD4-immunoglobulin fusions).
Immunoglobulins, or antibodies, are the antigen-binding molecules produced by B lymphocytes which comprise the humoral immune response. The basic unit of an immunoglobulin molecule consists of two identical heavy chains and two identical light chains. The amino-terminus of each chain contains a region of variable amino acid sequence (variable region). The variable regions of the heavy and light chains interact t
Beaudry Gary A.
Maddon Paul J.
Cooper & Dunham LLP
Progenics Pharmaceuticals Inc.
Ulm John
White John P.
LandOfFree
Uses of CD4-gamma2 and CD4-IgG2 chimeras does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Uses of CD4-gamma2 and CD4-IgG2 chimeras, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Uses of CD4-gamma2 and CD4-IgG2 chimeras will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2604182