Electrical computers and digital processing systems: multicomput – Network computer configuring
Reexamination Certificate
2000-03-09
2004-04-13
Shah, Sanjiv (Department: 2176)
Electrical computers and digital processing systems: multicomput
Network computer configuring
C709S223000, C709S224000, C709S225000, C709S226000, C379S090010, C379S093070, C379S093090
Reexamination Certificate
active
06721790
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Technical Field
This invention relates to enhancement of on-premises networking equipment's addressing system.
2. Description of the Related Art
When multiple data processing equipments and/or computing devices are interconnected to form a Local Area Network (LAN), each has to have an unique Network Address so that information can be routed to the intended terminal. When a LAN is interconnected with others through Wide Area Network (WAN) such as Internet, each LAN has to be assigned with an Internet Protocol Address (IP Address) for similar purpose. Both of these systems have been using an uniform identification format of four decimal numbers each ranging from 0 to 255, separated by the symbol “.” (period). Thus, this has been referred to as the “Dotted-Decimal” notation.
Each LAN would also designate one or more of its nodes as “Gateway” for the purpose of communicating with other LANs through the WAN. Consequently, the rest of terminals in the LAN have to be aware of the Gateway's Network Address within the LAN, so that traffic to other LANs can be funneled through the Gateway.
In addition, to distinguish and route WAN and LAN traffic among LANs and within a LAN, respectively, a SubNet Mask is used to segregate the IP Address information in messages. Although it functions based on binary algebra of utilizing “0” & “1” for screening, this Mask is also presented in the Dotted-Decimal notation.
Furthermore, certain terminal (or node) in a LAN or a WAN maintains a database that is capable of translating a terminal's IP Address to a alpha-numerical name, or vice versa. They are known as DNS (Domain Name Server). This is important because human users would prefer to specify terminals by names that have some meaning, not by the Dotted-Decimal IP Address that is concise for data processing equipment. A terminal without such facility, would need to be pre-stored with an IP Address that points to a DNS to function properly. Normally in a LAN, the DNS will be the Gateway, because it is the most logical candidate to possess such capability. Even if it does not have a database, it has the most direct access to a DNS in the WAN by virtual of the network architecture.
All combined, these four sets of Dotted-Decimal numbers, which are commonly referred to in the art as TCP/IP (Transmission Control Protocol/Internet Protocol) Properties, are very important parameters for the proper operation of data WANs and LANs. However, they are rather meaningless numbers for human users.
Traditionally, data WANs and LANs are set up and maintained by specially trained personnels with job titles such as Network Manager or Network Administrator who deal with the TCP/IP Properties daily. The IP Address of Internet nodes is coordinated by organizations such as Network Solutions <www.networksolutions.com>. The end users of the data equipments, however, have very little knowledge about these network parameters. To them, this is a somewhat mysterious subject.
A close analogy can be found in conventional voice communication. Telephone company has been assigning a Directory Number (commonly known as the “telephone number”) to each subscriber for routing telephone calls through Public Switched Telephone Network (PSTN). For business entities of significant size, additional local switching equipment such as Private Branch eXchange (PBX) or Private Automatic Branch exchange (PABX), would be used. Each worker is assigned an Extension Number within the business so that telephone calls can be further routed to an individual's desk, directly.
PSTN service has always been offered by telephone operating companies with specially trained staff. Full time organizations under the supervision of FCC (Federal Communications Commission) administrate the nation-wide DNs. A business' PBX (or PABX) has traditionally been maintained by a Telecom Manager whose duties include assigning and maintaining a consistent set of Extension Numbers.
As the PBX and LAN technologies mature, the equipment itself has become affordable to small business and homes. Thus, SOHO (Small Office Home Office) has become the emerging market for these products. However, their installation and maintenance practices still require significant technical know-how.
One of them is the assignment and maintenance of the IP Address in a LAN and the Extension Number in a PBX. Unique identification codes need be assigned to all users for a LAN or a PBX to begin to function. If these numbers are not properly managed, operation of these systems can easily be disrupted.
This has been one of the major impedances for these products to enter the SOHO market. The potential customers can not afford a Network or Telecom manager. Yet, they are simply scared by the extensive efforts required to own such systems by larger business.
The Extension Number in a PBX is not as difficult a subject as the IP Address in a LAN, because the Extension Numbers are published in a business' directory and are being used in daily operation. It is relatively easy to correlate such a number to a co-worker's name. The IP address of a data processing equipment, on the other hand, is too remote to most people.
The advent of Distributed PABX (DPABX) (U.S. Pat. No. 5,596,631) and HomePNA (Home Phone Network Alliance) (U.S. Pat. No. 5,696,790), both being modular in device construction and peer-to-peer in network architecture, has made these products one step closer to the consumer market where more capable and efficient communication, both voice and data, is in fast growing demand.
Both of these products consist of identical modules at each location where service is desired. The modules are interconnected via a single pair of traditional telephone wires. There is no central or master unit in the system. The modules address one another based on an identification code assigned to each. These basic characteristics allow a SOHO owner to add, move or disconnect a module easily. Furthermore, a failed module with a critical application can be quickly replaced by another one of lesser importance, minimizing the disruption to business. Thus, the need for Telecom or Network Manager could be avoided.
The DPABX control modules are designed with “subscriber settable ID switches” which allow an user to assign an Extension Number to a control module by simply changing the ID switches to a new combination. The validity of the chosen Extension Number can be verified easily by making an intercom call to this number. For example, if this latest choice is a duplication of an existing assignment, the other telephone extension in the network would also be alerted by this test call. A different number combination should then be assigned to this last control module. The verification process is repeated until an available Extension Number is identified. Equipped with this simple procedure, this system is fully ready for consumer market.
The HomePNA Adapters, on the other hand, are still evolving from its data LAN origin. Among other parameters that may affect their operation, the setting of “IP Address” is still a nontrivial task reserved for the experienced.
One approach of attempting to ease this difficulty has been practiced in the LAN technology for some time. It is termed DHCP (Dynamic Host Configuration Protocol). It enables the Gateway of a LAN to automatically assign a set of values to a Client as its IP Address. This relieves the burden on the Network Manager who has to oversee the operation of the LAN. Because the DHCP process is somewhat random, however, the IP Address assigned by the Gateway becomes even less predictable. It makes troubleshooting more difficult. For example, when a new terminal is installed onto a LAN, it could receive an IP Address assignment that has already been used by another terminal which happened to be not active. Conflict arises in the future when both of these terminals are powered on at the same time. To avoid this unpredictable situation, some Network Managers would rather keep DHCP feature disabled.
Nevertheless, it is
Avinta Communications, Inc
Nguyen Chau
Shah Sanjiv
LandOfFree
User settable unified workstation identification system does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with User settable unified workstation identification system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and User settable unified workstation identification system will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3205473