Surgery – Diagnostic testing – Detecting nuclear – electromagnetic – or ultrasonic radiation
Reexamination Certificate
1999-11-24
2002-10-01
Lateef, Marvin M. (Department: 3737)
Surgery
Diagnostic testing
Detecting nuclear, electromagnetic, or ultrasonic radiation
C600S440000, C378S037000, C128S915000
Reexamination Certificate
active
06459925
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to medical imaging/biopsy systems, and more particularly, to an enhanced system that employs x-ray imaging and targeted ultrasound imaging in a combinative, spatially correlatable manner that is particularly apt for breast imaging/biopsy procedures. The invention further relates to targeted ultrasound features that yield plural modalities of operation as well as improved biopsy capabilities and a user interface system for facilitating targeting of a medical instrument to an area of interest within a patient's breast.
BACKGROUND OF THE INVENTION
The benefits of early detection and tissue diagnosis of potential lesions and/or suspicious masses within the body is now well established. Indeed, as medical practice and managed care plans continue to evolve, the role of early detection and tissue diagnosis is ever-increasing. With such emphasis, both efficacy and efficiency are at a premium. Specifically, reduction of the time requirements of highly trained medical personnel, patient office visits and medical equipment costs (e.g., via use of multiple-purpose equipment) are primary objectives for procedures utilized in the early detection and tissue diagnosis of potential lesions and otherwise suspicious masses.
Of particular ongoing interest is the area of mammography and breast biopsy. Currently, it is common for patients to receive regular screening mammograms, wherein two x-ray images are generated for each breast in order to identify potential lesions or masses suspicious for malignancy. In the event of equivocal screening mammograms, further x-ray or ultrasound imaging/exams may be performed to obtain additional information. The obtainment of a diagnostic mammogram and/or an ultrasound exam requires another patient office visit and additional medical personnel time. For example, if the presence of a suspicious mass is confirmed, an ultrasound procedure may be performed in order to further characterize the mass. Specifically, a free-hand procedure can be performed in which a hand-held ultrasound probe is manipulated on the breast while viewing a display to obtain depth-profile information. As can be appreciated, location of a potential lesion/suspicious mass can be difficult, and the ultrasound images obtained are frequently difficult to mentally associate with the x-ray images. As such, the ability to utilize ultrasound technologists as opposed to experienced physician specialists to perform most breast ultrasound procedures is limited.
Should a breast lesion show signs of malignancy pursuant to diagnostic mammography or ultrasound, a breast biopsy is typically performed. Needle localized surgical biopsy means have recently been giving way to stereotactic x-ray biopsy with automated core needles and tissue removal systems. A patient is typically positioned prone (e.g., on a solid table) with the breast immobilized within a predetermined frame of reference (e.g., the breast passes through an opening in the table and is immobilized between opposing compression plates). Stereotactic X-ray images are then generated (e.g., via x-ray film or digital imaging) for review by medical personnel to identify a specific location of interest (e.g., corresponding with a potential lesion or suspicious mass) within the predetermined frame of reference. A puncture instrument, mounted in predetermined relation to the predetermined frame of reference, is then positioned/utilized to obtain a sample of tissue from the location of interest. Of note, current state-of-the-art breast biopsy systems include the MAMMOTEST®, MAMMOVISION® and SENOSCAN™ products offered by Fischer Imaging Corporation of Denver, Colo. Such systems are further described in U.S. Pat. Nos. 5,078,142, 5,240,011, 5,415,169, 5,526,394 and 5,735,264, hereby incorporated by reference in their entirety.
While breast lesions may typically be biopsied utilizing stereotactic x-ray imaging, only recently have technical improvements in ultrasound allowed certain lesions to be biopsied under ultrasound guidance (i.e., with hand-held ultrasound probe and/or biopsy means). In this regard, ultrasound may be preferred due to the lack of ionizing radiation and the established availability of real time imaging to reduce procedure time.
Recent developments in tissue removal systems have resulted in larger, heavier devices that are difficult for a physician to use in conjunction with free-hand ultrasound guidance. As an example, the MAMMOTOME™ from Biopsys Medical, Inc. of Irvine, Calif. allows rapid removal of breast tissue through a small puncture hole in the breast. Due to the weight and size of the device, physicians are performing more stereotactic x-ray procedures with the MAMMOTOME™ due to the solid support of the device by prone stereotactic tables.
In the event that analysis of tissue by histopathologic techniques indicates that a lesion or undesirable mass should be removed from a breast, the surgeon will typically review the various breast images previously obtained to develop a therapeutic surgical strategy, with the goal of removing the entire potential lesion and/or suspicious mass while achieving acceptable cosmetic results.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide an enhanced imaging/biopsy system that can reduce trained medical personnel time requirements in diagnostic and biopsy procedures for tissue diagnosis. It is a related objective to provide such a system in a cost-effective manner; namely through the provision of a system having relatively expensive components that can be utilized for multiple medical procedures combinatively employed in a single system.
A further objective of the present invention is to provide an enhanced imaging/biopsy system for obtaining spatially correlated three-dimensional image information regarding a location of interest in the body, such system being apt for the obtainment of three-dimensional image information regarding a potential lesion or suspicious mass in a female patient's breast. It is a further objective to provide such information in a manner allowing for enhanced use of tissue removal systems used for obtaining tissue samples from the body, including specifically, tissue from a potential lesion or suspicious mass within a female patient's breast. Such information may also be used in conjunction with other targeted instruments such as guide wire placement devices and instruments for ablation, delivery, etc.
Yet another objective of the present invention is to provide an enhanced imaging/biopsy system for obtaining depth-related image information for diagnostic use and for otherwise yielding biopsy-related control and access advantages.
These objectives and additional advantages are met by various aspects of the present invention. In this regard, one aspect of the present invention provides for the combinative use of x-ray imaging and targeted ultrasound imaging. More particularly, this inventive aspect provides for the transmission of x-ray radiation through a selected body region-of-interest within a predetermined, three-dimensional frame of reference to obtain x-ray image data corresponding with one or more x-ray images. Additionally, an ultrasound signal is directed into a limited, selectively targeted portion of the x-rayed body region of interest to provide ultrasound image data corresponding with one or more ultrasound images of the targeted portion of the selected body region. The x-ray and ultrasound image data are acquired in spatial co-relation by utilizing x-ray imaging means and ultrasound imaging means each supportably positioned in known co-relation to the predetermined, three-dimensional frame of reference. This arrangement allows the x-ray and ultrasound image data to combinatively provide correlated, three-dimensional image data corresponding with the body region of interest. In turn, the spatially correlated information allows for an enhanced medical diagnosis of a given location of interest within the body region (e.g., potential lesion or suspicious mass in a breas
Connor John
Daly Curtis
Nields Morgan W.
Fischer Imaging Corporation
Lateef Marvin M.
Marsh & Fischmann & Breyfogle LLP
Qaderi Runa Shah
LandOfFree
User interface system for mammographic imager does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with User interface system for mammographic imager, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and User interface system for mammographic imager will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2934212