Computer graphics processing and selective visual display system – Display peripheral interface input device
Reexamination Certificate
2000-05-08
2003-09-02
Nguyen, Chanh (Department: 2675)
Computer graphics processing and selective visual display system
Display peripheral interface input device
C345S173000
Reexamination Certificate
active
06614419
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to multifunctional displays and, in particular, to labeling functional control keys of multifunctional displays.
BACKGROUND OF THE INVENTION
Generally, the controls on interactive displays are either hard labeled or soft labeled. Hard labels, sometimes referred to as “fixed,” are those legends unchangeably printed on or near the control key, switch, or knob. Soft labels are legends printed on a display screen, typically adjacent to the control key, switch, or knob. Each are well known means of labeling.
Hard labeling limits the introduction of upgrades and additional features or functions into a device. The inability to change hard labels in an existing device limits the scope of changes that can be made to functions and features of that device. One printer device described in U.S. Pat. No. 4,994,988, entitled PRINTER HAVING A MULTIMODE CONTROL PANEL SELECTIVELY MANIPULATABLE BETWEEN VARYING MODES OF OPERATION, issued to Yokoi on Feb. 19, 1991, the complete disclosure of which is incorporated herein by reference, uses mechanical means to provide different hard labels for each of two different modes of operation. Yokoi provides multiple function switches on a control panel, each of the switches having a different function for each mode of operation. A first set of hard labels are provided on the control panel adjacent each switch, each label indicating the function of the adjacent switch relative to the first mode of operation. A second set of hard labels are provided on a “lid” hinged to swing into position over the first set of hard labels (and the switches). The lid includes mechanical means for controlling the current mode of the printer device and for changing the current functionality of the switches to match the current operational mode of the printer device. Although the Yokoi device provides multifunctionality and variable labeling in a hard labeled device, it fails to provide for upgrades and additional features or functions beyond those originally programmed into the device.
Soft labeling can provide the variable functionality needed for introducing upgrades and additional features or functions into a device. U.S. Pat. No. 5,144,115, entitled TRANSACTION INQUIRING METHOD AND APPARATUS, issued to Yoshida on Sep. 1, 1992, the complete disclosure of which is incorporated herein by reference, discloses a form of “on-screen” or “soft” labeling in the context of an automated teller machine for banking transactions. The soft labels are displayed on a touch-sensitive screen and the function corresponding to each of the touch-sensitive switches varies depending upon the current mode of operation. Other machines use soft labeling in connection with off-screen switches or control keys. For example, U.S. Pat. No. 5,633,912, entitled MOBILE TELEPHONE USER INTERFACE INCLUDING FIXED AND DYNAMIC FUNCTION KEYS AND METHOD OF USING SAME, issued to Tsoi on May 27, 1997, the complete disclosure of which is incorporated herein by reference, discloses multiple off-screen keys each associated with soft labels displayed on an adjacent display screen of a mobile telephone handset. The soft-labeled keys are operative to access corresponding function labels relevant to the current operative mode or “context” of a user interface. The Tsoi device further combines the soft-labeled keys with a standard 10-key pad, each key having a fixed function designated by a hard label fixed thereon.
While soft labeling can provide the variable functionality needed for introducing upgrades and additional features or functions into a device, the label requires display space. Whether associated with on-screen touch-sensitive switches or off-screen mechanical switches, the soft label uses up valuable display space, often requiring up to 20% of the screen to display static control legends.
Thus, each of the known labeling methods, hard labeling and soft labeling, have serious limitations for use in a dynamically changing application displaying large quantities of information on a size-constrained display screen. What is needed is switch labeling method that provides maximum design flexibility and a secure path for introducing upgrades and additional features or functions into a device, without claiming the available display space.
SUMMARY OF THE INVENTION
The present invention overcomes the limitations of the prior art by providing a switch labeling method that provides maximum design flexibility and a secure path for introducing upgrades and additional features or functions into a device, without claiming the available display space, and a device embodying the switch labeling method. The method and device of the present invention overcome the limitations of the prior art devices by providing a combination of both “Secret Until Lit” labeling and soft labeling for use in a dynamically changing application capable of displaying large quantities of information on a display screen having size constraints.
According to one aspect of the invention, the present invention provides a user interface for use in a multifunctional display, the user interface includes one or more operational mode selection keys coupled to select different ones of multiple operational modes accessible by the user, and one or more function control keys electrically coupled with a selected operational mode. A Secret Until Lit label is electrically coupled with each function control key. When an associated operational mode is selected, the Secret Until Lit label is illuminated and presents a context sensitive function legend that defines the control key's function relative to the selected operational mode. The interface also includes an on-screen soft label electrically coupled with each function control key. When a second different operational mode is selected, the Secret Until Lit label is extinguished and the soft label is activated. The activated soft label presents a context sensitive function legend that defines the control key's function relative to the currently selected second operational mode. Thus, each of the Secret Until Lit labels and the on-screen soft labels are visible only when an associated operational mode is selected.
According to various aspects of the invention, the Secret Until Lit labels are positioned on a face of the function control key and/or on a panel surface of the multifunctional display nearby the function control key. Multiple independent sets of Secret Until Lit labels are optionally positioned on or nearby the function control keys. Each set of Secret Until Lit labels defines the functions of the function control keys relative to a different operational mode. Therefore, each independent set of Secret Until Lit labels is illuminated when the associated operational mode is selected. This activation of the independent sets of Secret Until Lit labels is driven by either a software command or a hardware switch.
According to other aspects of the invention, multiple operational modes include the on-screen soft labels. Thus, independent sets of soft labels associated with different operational modes appear on the display screen and define the functions of corresponding function control keys relative to the currently selected operational mode. The soft labels appear under the control of a software or hardware command.
According to other aspects of the invention, the secret until lit labels include a structure formed of substantially rigid transparent plastics material, such as a Perspex or acrylic block, having a first entry face and an opposing exit face and a label positioned proximately to the exit face. An illumination source, such as a light emitting diode, is mounted proximately to the entry face. The illumination source is coupled to one operational mode and generates illumination responsively to selection of that operational mode. According to some aspects of the invention, a light diffuser is positioned between the exit face and the label. According to other aspects of the invention, the label act as the light diffuser.
According to one aspect of the
Honeywell International , Inc.
Nguyen Chanh
LandOfFree
User interface for use in a multifunctional display (MFD) does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with User interface for use in a multifunctional display (MFD), we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and User interface for use in a multifunctional display (MFD) will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3112565